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As discussed at length in Christodoulakis et al. (2015) [3], there is a natural one-many 
correspondence between simple undirected graphs G with vertex set V = {1, 2, . . . , n} and 
indeterminate strings x = x[1..n] — that is, sequences of subsets of some alphabet �. 
In this paper, given G, we consider the “reverse engineering” problem of computing 
a corresponding x on an alphabet �min of minimum cardinality. This turns out to be 
equivalent to the NP-hard problem of computing the intersection number of G, thus in turn 
equivalent to the clique cover problem. We describe a heuristic algorithm that computes an 
approximation to �min and a corresponding x. We give various properties of our algorithm, 
including some experimental evidence that on average it requires O(n2 log n) time. We 
compare it with other heuristics, and state some conjectures and open problems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we seek to extend the connections between graph theory and stringology explored in [3]. We consider 
a string x = x[1..n] to be a sequence of letters x[i], 1 ≤ i ≤ n, that are nonempty subsets of a given finite set �, called 
the alphabet. If x[i] is a subset of cardinality 1, it is said to be a regular letter; otherwise, indeterminate. Similarly, if x
contains only regular letters, it is said to be regular; otherwise, indeterminate. For example, on � = {a, b, c}, x = ababc
is regular,2 while y = {a, b}ba{b, c}b is indeterminate. Indeterminate strings are useful in various application areas, notably 
bioinformatics, where under certain circumstances DNA sequences can be regarded as indeterminate strings on nucleotides 
{a, c, g, t}. In recent years indeterminate strings have been the subject of much study [12,11,17,1].

Given string x = x[1..n], we say that for 1 ≤ i, j ≤ n, x[i] matches x[ j] (written x[i] ≈ x[ j]) if and only if x[i] ∩ x[ j] �= ∅. 
Thus in particular x[i] = x[ j] =⇒ x[i] ≈ x[ j]. As defined in [3], the associated graph Gx = (V x, Ex) of x is the simple graph 
whose vertices are positions 1, 2, . . . , n in x and whose edges are the pairs (i, j) such that x[i] ≈ x[ j]. Suppose that for 
some position i0 ∈ 1..n, x[i0] matches x[i1], x[i2], . . . , x[ik] for some k ≥ 0, and matches no other elements of x. We say 
that position i0 is essentially regular if and only if the entries in positions i1, i2, . . . , ik match each other pairwise. If every 
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position in x is essentially regular, we say that x itself is essentially regular. Hence every essentially regular string can be 
replaced by an equivalent regular one, and the associated graph Gx is a collection of disjoint cliques if and only if x is 
essentially regular.

For general indeterminate strings, however, Gx is more interesting. In Section 2 we discuss a conjecture stated in [3], that 
given a finite simple graph G whose maximal cliques have basis B, |B| is the minimum alphabet size of any string x whose 
associated graph Gx = G . We discover that this conjecture is just a reformulation, in a slightly different context, of the 
problem of computing the intersection number of G , which is NP-hard, and hence computing the minimum alphabet size 
of any string is also NP-hard. Section 3 describes an algorithm that approximates a basis of G by assigning symbols to the 
vertices of cliques until all vertices are labeled, thus effectively computing a string x whose associated graph Gx = G . This is 
an example of the “reverse engineering” of a data structure, a class of problems initiated in [8,7] for the border array, and 
extended to other structures in, for example, [2,9,4]. In Section 4 we discuss our algorithm’s results and execution, especially 
in the context of other algorithms that perform closely-related computations. Section 5 discusses a few conjectures and open 
problems.

2. Maximal cliques in the associated graph Gx

Suppose a collection F = F1, F2, . . . , Fn of sets is given. Then the intersection graph GF of F is a simple undirected 
graph on |F | = n vertices 1, 2, . . . , n, with an edge (i, j), 1 ≤ i, j ≤ n, if and only if Fi ∩ F j �= ∅. Conversely, it was shown in 
[18] that, given a simple undirected graph G on vertices 1, 2, . . . , n, a collection F of n sets can be found such that G is the 
intersection graph of F . (For example, for each (i, j) in G , i < j, place a unique symbol λi, j in Fi and F j .) The intersection 
number θ(G) of G is the smallest number of distinct symbols that can be placed in the sets of F such that G = GF . In 
our application, the collection F becomes a string x = x[1..n] with x[i] = Fi (necessarily nonempty). The associated graph 
and the intersection graph are thus the same, and we seek a smallest alphabet �min that produces it. Let σmin = |�min|, the 
cardinality of such an alphabet.

The standard way of efficiently representing a finite simple graph G as an intersection graph is by covering the graph by 
cliques. Take any set of cliques covering all edges of G . For each vertex v , let F v be the set of those cliques containing the 
vertex v . Then the intersection graph of {F v} coincides with G . As a result, the intersection number θ(G) is equal to the 
edge clique cover number ec(G), the cardinality of a minimum size set of the cliques that covers all the edges of G . Erdős et 
al. [6,16] proved that θ(G) ≤ �n2/4�, an upper bound that is achieved when G is a triangle-free graph on �n2/4� edges [15]. 
An instructive example is given by the complete bipartite graphs Km,m (for even n = 2m) and Km,m+1 (for odd n = 2m + 1) 
for which the minimal covering by cliques consists of all edges, the number of which is precisely �n2/4�.

Erdős et al. use coverings that cover all vertices as well as all edges. If G has no isolated points, this is equivalent to 
the “edge covering” approach discussed above. For this case, they prove that ec(G) ≤ �n2/4� and that one need only use 
2-cliques and 3-cliques (edges and triangles) in a minimal covering.3

More recently, Conjecture 21 in [3] formulated the problem in a slightly different way, in terms of the maximal cliques 
in G; that is, those that are not proper subgraphs of any other clique. We provide here a proof of this conjecture, thus 
validating the several following remarks made in that paper. To be consistent with [3], we use the notion of basis. A basis 
is a minimum size set of maximal cliques that covers all edges and all vertices of G .

Lemma 1. Suppose that a finite simple graph G with vertex set V = {1, 2, . . . , n} has a basis B of maximal cliques of cardinality σmin. 
Then there is a string x on a base alphabet of size σmin whose associated graph Gx = G . No string on a smaller alphabet has this 
property.

Proof. Let B = {C1, C2, . . . , Cσ }. Let {λs}σs=1 be distinct letters. We construct a string x as follows. For each ordered pair (s, i)
with 1 ≤ s ≤ σ and 1 ≤ i ≤ n, assign λs to x[i] if vertex i occurs in the maximal clique Cs . It is clear from the definitions 
that the string x so constructed satisfies Gx = G .

Now consider any string x of length n for which Gx = G and let τ be the number of distinct (ordinary) letters occurring 
in x. For each such letter λ, there is a clique Cλ of G whose vertices are those i for which λ ∈ x[i]. Of course, these cliques 
may not be maximal, but each Cλ can be extended to a maximal clique C ′

λ . Note that every vertex and edge of G occurs in 
one of the cliques Cλ and a fortiori in one of the maximal cliques C ′

λ . However, the C ′
λ might not all be distinct. Let τ ′ be 

the number of distinct C ′
λ . Then τ ≥ τ ′ ≥ σ , the latter inequality following from the fact that there is a basis of cardinality 

σmin. This shows that τ cannot be less than σmin and completes the proof. �
It turns out that maximality is irrelevant in the specification of basis. Let φ′(G) be the cardinality of a basis (of maximal 

cliques) in G and let φ(G) be the cardinality of a smallest set of cliques that cover all edges and vertices of G . Then:

Observation 2. φ′(G) = φ(G).

3 The authors thank an anonymous referee who drew their attention to the available material on intersection graphs and clique edge covers.
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