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A B S T R A C T

In this paper, we present a combined finite element/ discontinuous Galerkin/ level set method to simulate the
incompressible two phase flow. The level set method is employed to capture the moving interface because of its
simplicity and efficiency when dealing with the significant interface deformations. Due to the hyperbolic nature
of the level set equation and the level set re-initialization equation, we apply the second order Runge Kutta
Discontinuous Galerkin (RKDG) method to get the stable and precise results. Moreover, in order to obtain the
accurate velocity field, the hybrid continuous and discontinuous Galerkin approach is utilized to solve the in-
compressible Navier–Stokes equations. In our combined method, there is no need to re-initialize the level set
function in every time step and the re-initialization process is implemented after suitable time steps. The de-
sirable mass conservation property is able to be guaranteed with a mass correction technique in the combined
algorithm. In addition, the stabilization terms can be avoided in the whole computational process. Several
challenging problems, i.e., a rising bubble, the dam-break flow, the Rayleigh–Taylor instability, and the complex
metal casting process in the engineering applications are investigated to evaluate the feasibility, validity and
practicability of our approach for solving the problem of the incompressible two phase flow.

1. Introduction

Two phase flow appears in numerous engineering applications, such
as metal casting, wave mechanics, water-oil separation, and the crystal
growth. In the finite element framework, developing the effective nu-
merical approach to simulate the flow with free surface via the level set
method [1,2] is of great importance and has been a research hotspot in
the past several decades [3–8].

In the simulation of the incompressible two phase flow, the surface
tension plays an important role in some cases, and the interface ex-
periences significant deformations due to the large density and viscosity
ratios. The level set method is easy to deal with the conspicuous in-
terface deformations. It is also convenient to calculate the outer normal
direction of the interface via the level set function, which is essential for
computing the surface tension. Therefore, the level set approach is
commonly used to capture the moving interface. However, solving the
level set and the level set re-initialization equations utilizing the stan-
dard Finite Element Method (FEM) may lead to the numerical oscilla-
tions [9]. In 2005, Nagrath et al. [10] proposed a streamline-upwind/
Petrov–Galerkin (SUPG) method to solve the level set equation.
Whereas, the level set function needs to be re-distanced at the end of
each time step [10,11], which consumes more computational time. In

2016, Touré et al. [12] transformed the level set equation into a con-
vection-diffusion form with parameters and resorted to the stabilized
SUPG method for the spatial discretization. Nevertheless, it is not easy
to deal with the boundary conditions. The computation of the level set
equation in the switched form also needs extra stabilization term and it
may cause some unexpected numerical errors.

The Discontinuous Galerkin (DG) method [13–15], which was ori-
ginally introduced for the hyperbolic type equations, is an attractive
approach to deal with the level set and the level set re-initialization
equations [16] for solving the problem of the incompressible two phase
flow. However, when utilizing DG to handle the elliptic equation [17],
it increases the memory size, the complexity for programming and the
total computational cost.

In addition, the level set method has the main drawback of the mass
loss or gain [18]. Thus, the authors [19] established the combination of
the volume of fluid method and the level set method to enforce the mass
conservation property. However, the simplicity of the original level
set algorithm lost in this case.

As for the engineering problem with incompressible two phase flow,
it usually involves the irregular computational domains. In the simu-
lation of the metal casting process, Pang et al. [20] have simplified the
geometry of the irregular cavity to reduce the difficulty of dealing with
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the boundary conditions. However, it lowers the authenticity of the
final results.

In this work, our main goal is to advocate a combined finite ele-
ment/discontinuous Galerkin/level set approach to tackle the in-
compressible two phase flows efficiently, stably and accurately. This
combined approach is also applied to model the complex metal casting
for the irregular cavity in the engineering. In the combined algorithm,
we make the best of the advantages of FEM and DG to avoid the sta-
bilization terms and save the total computational cost. In this way, we
employ the continuous and discontinuous Galerkin method based on
the split scheme [21] to solve the incompressible two phase Navier–-
Stokes equations and obtain the precise velocity field. Furthermore, the
second order RKDG method is used to deal with the level set and the
level set re-initialization equations to achieve the accurate and stable
results. As a result, the level set re-initialization procedure is not ne-
cessary in every time step. We are able to carry out the level set re-
initialization equation after a certain number of time steps and the
computational cost is reduced. In addition, we add a simple geometric
mass correction algorithm [11] in our combined method to overcome
the major shortcoming of the gaining or losing mass during the com-
putation of the level set method.

The paper is organized as follows. In Section 2, we briefly introduce
the non-dimensional incompressible Navier–Stokes equations, the level
set equation and the level set re-initialization equation. In Section 3, we
describe our combined method in details. Then, in Section 4, several
challenging problems, namely, a bubble rising, the dam-break flow, the
Rayleigh–Taylor instability and the complex metal casting process are
investigated to demonstrate the feasibility, validity, robustness and
practicability of our combined method. Finally, in Section 5, we give
some concluding remarks.

2. Governing equations

The incompressible two phase flow problem always contains two
different fluids and the moving interface. A schematic graph is shown in
Fig. 1. The area of fluid 1 and fluid 2 are denoted as Ω1 and Ω2, re-
spectively. The interface between these two fluids is represented by Γ.
Let us assume that both fluids are viscous and Newtonian. The math-
ematical model of this problem mainly involves the incompressible
Navier–Stokes equations and the level set equation.

2.1. Non-dimensional incompressible Navier–Stokes equations

The non-dimensional incompressible Navier–Stokes equations of the
two phase flow can be written as [22,23]
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, Re represents the

Reynolds number, Fr denotes the Froude number, Wb is the Weber

number, g means the gravitational acceleration, σ is the coefficient of
surface tension, g0 is the unit vector in the direction of gravitation, and
Uref, Lref, ρref, μref are the reference velocity, length, density and visc-
osity, respectively. The velocity is denoted by u, p is the pressure, ρ is
the density and μ is the viscosity. The force due to the surface tension on
the interface is given by Brackbill et al. [24]
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where ϕ is the level set function.
The density and viscosity are able to be written on the entire domain

[22,23] as
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where ρ1 and ρ2 are the density of fluid 1 and fluid 2; μ1 and μ2 are the
viscosity of fluid 1 and fluid 2. The smoothed Heaviside function, H(ϕ),
is written as follows
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and we choose ε to be about 1.3hmax in the calculation, where hmax is
the maximum grid size.

2.2. Level set function

In our algorithm, a level set function ϕ is utilized to capture the
interface. The values of ϕ are set as negative in the fluid area of Ω1 and
positive in the fluid area of Ω2. The interface Γ is represented by the
zero level set of ϕ

= =ϕ tx xΓ { ( , ) 0} (7)

With time evolving, the level set function is advected by the fluid
velocity field. As for the incompressible two phase flow, the level set
equation in the conservative form is that
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2.3. Re-initialization equation of level set function

In order to make sure that the level set function remains to be the
signed distance function, it is necessary to solve the following equation
for a few steps with the initial condition [1]
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, ϕ0 is the initial level set to be re-initialized, τ

represents the artificial time and ε is half of the interfacial thickness.
The artificial time step Δτ is chosen as the same with Δt. The boundary
condition is that nwall · ∇φ=0, where nwall is the outward normal
direction of the wall.

We can rewrite the equation as
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ϕ0 .Fig. 1. A sketch of the phase flow problem.
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