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A B S T R A C T

For many decades, hydraulic fracturing has been the technique most commonly used in the oil and gas industry to
increase the productivity of low permeability reservoirs. However, much uncertainty remains when applying this
technique, which can influence performance. It has proved difficult, for example, to evaluate the uncertainties
inherent in traditional deterministic hydraulic fracturing models using classic analytical and numerical methods.
Thus, in this study, we adapted reliability analysis to evaluate the performance of hydraulic fracturing including
the length, width, and nature of a fracture when considering uncertainty. Random variables are assumed to follow
a normal distribution, and the first-order reliability method (FORM) was used to calculate a reliability index for
hydraulic fracturing based on Khristianovic-Geertsma-de Klerk (KGD) and Perkins-Kern-Nordgren (PKN) models.
Reliability indexes obtained under different conditions show excellent agreement with Monte Carlo simulations,
and indicate that use of this method provides an efficient and effective scientific approach for the uncertainty
analysis of hydraulic fracturing. We also investigate and discuss the influence of elastic mechanical parameters of
rock formations as well as in situ stress as random variables affecting the performance of hydraulic fracturing
alongside various other factors that can influence this process, including rock tensile strength, injection rate and
time. This analysis provides quantitative insights into the uncertainties that underlie hydraulic fracturing models
and enables the identification of potentially influencing factors to reduce performance uncertainties. The results
also show reliability analysis provides an appropriate solution for evaluation of uncertainty and can further
improve the performance of hydraulic fracturing.

1. Introduction

Hydraulic fracturing has been commonly applied for decades in the
oil and gas industry to increase the productivity of low permeability
reservoirs. This method can broadly be defined as the process by which a
fracture initiates and propagates as the result of hydraulic loading (i.e.,
pressure) applied via a fluid (Adachi et al., 2007). Hydraulic fracturing
has also been applied in other geomechanical fields, including for the
disposal of waste drill cuttings underground (Moschovidis et al., 2000),
heat production from geothermal reservoirs (Harlow and Pracht, 1972),
CO2 sequestration (Boschi et al., 2009), coal bed methane recovery (Heo
et al., 2015), gas control in coal mines (Li et al., 2015), and for the in-situ
characterization of stress (Desroches, 1995).

This process, however, represents a multi-scale and multi-physical
problem. Hydraulic fracturing of reservoir media under transient dy-
namic loadings comprises coupled mechanical and thermal processes as
well as fracturing and filtration. Of these, mechanical processes include
irreversible deformation, fluid-rock interactions, and the flow of fluids

with phase transitions, while the process of fracturing involves the for-
mation, movement, interaction, and accumulation of micro-structural
damage (i.e., pores, cracks). However, these processes and the way
they interact are very complicated and uncertain; while the dimensions
and propagation characteristics of a hydraulic fracture are crucial to the
design of operations, these parameters are very difficult to determine in
practice. Accurately determining the shape and dimensions of propa-
gating fractures are critical challenges in hydraulic fracturing.

A number of simplified analytical hydraulic fracturing models have
been developed in recent decades, including two classical constant height
models, the Khristianovic-Geertsma-de Klerk (KGD) model (Khristia-
novic and Zheltov, 1955; Geertsma and Klerk, 1969) and the Perkins-
Kern-Nordgren (PKN) model (Perkins and Kern, 1961; Nordgren,
1972), in addition to pseudo three-dimensional (3-D) models (Settari and
Cleary, 1986). These models, however, typically make very simple as-
sumptions about crack geometry, the criteria governing crack origina-
tion, and the dynamics of crack propagation, internal fluid flow,
formation, and fluid properties. In reality, due to the complexity of
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hydraulic fracturing, this process has proved difficult to characterize
using analytical models. A number of additional numerical methods,
including the use of finite (FE) and boundary elements, have been pro-
posed as useful tools to model the propagation of hydraulic fractures
(Papanastasiou, 1999; Garagash, 2006; Lecampion and Detournay, 2007;
Zhang et al., 2011; Carrier and Granet, 2012; Hunsweck et al., 2013);
available numerical approaches were reviewed by Adachi et al. (2007).
Recently, an extended FE (XFEM) and discrete element methods have
also been applied to simulate hydraulic fracturing (Choi, 2003; Lecam-
pion, 2009; Gordeliy and Peirce, 2013; Deng et al., 2014; Wang, 2015).

Presently available works that deals with the origination and propa-
gation of cracks in high velocity fluid flow regimes are very limited in
terms of physical and geometrical descriptions of phenomena, mecha-
nisms, uncertainties, and optimization analysis (Lukyanov and Chugu-
nov, 2014). The limitations of available analytical and numerical
methods lie in the fact that they do not take into account uncertainties in
variables such as parameters of rock mechanics, in situ stress, and injec-
tion rate. Thus, to evaluate the uncertainties that underlie hydraulic
fracturing, Lukyanov and Chugunov (2014) applied global sensitivity
analysis to quantify and rank uncertainties in the performance metrics of
predicted fracturing processes, building on earlier work by Rutqvista
et al. (2000), who analyzed the uncertainties involved in the determi-
nation of in situ stress by hydraulic fracturing. Previous work has shown
that it is essential to take into account uncertainties in hydraulic frac-
turing because these exert considerable influence on the shape and di-
mensions of propagating fractures.

Reliability analysis is one method that can be used to appropriately
evaluate uncertainty. This analytical approach was developed and has
been successfully applied in rock mechanics and engineering (Hoek,
1998; Oreste, 2005; Mollon et al., 2009; Li and Low, 2010; Lv and Low,
2011; Zhao et al., 2014). We adapted the reliability analysis method in
this study in order to characterize the uncertainties involved in hydraulic
fracturing, applying first-order reliability methods (FORM) to quantify
uncertainties. We calculated and analyzed values for the reliability index
as well as probabilities of failure to provide quantitative insights into the
uncertainties underlying models for hydraulic fracturing and to identify
factors that contribute to reductions in the performance of hydraulic
fracturing.

2. First order reliability method that apply varying
dimensionless numbers

The Hasofer-Lind index (β), is widely used in reliability analysis
(Hasofer and Lind, 1974). The matrix formulation for a correlated normal
of this index is calculated as follows:

β ¼ minX2F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX � μÞTC�1ðX � μÞ

q
; (1)

In this expression, X is the vector representing the set of random variables
xi, while μ is the vector of mean values, C is the covariance matrix, and F
is the failure domain. Eq. (1) provides the minimum distance in units of
directional standard deviation from the mean-value point of random
variables to the boundary of the limit state surface.

Low and Tang (1997a, 1997b) presented an alternative interpretation
of β based on the perspective of an expanding ellipsoid in the original
space of the basic random variables, expressed as follows:

β ¼ minX2F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
xi � μi
σi

�T
½R��1

�
xi � μi
σi

�s
; (2)

In this expression, [R] is the correlation matrix, and σi denotes the
standard deviation of random variable xi.

In the case of correlated non-normals, an ellipsoidal perspective re-
mains valid if Eq. (2) is rewritten as follows:

β ¼ minX2F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
xi � μNi
σN
i

�T
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�
xi � μNi
σNi

�s
(3)

In this expression, μiN and σi
N denote the equivalent normal mean and

equivalent normal standard deviation of random variable xi, respectively.
Values for μNi and σNi can be computed by applying the Rackwitz-Fiessler
two-parameter equivalent normal transformation (Rackwitz and Fiessler,
1978), as follows:

σN ¼ φfΦ�1½FðxÞ�g
f ðxÞ (4)

μN ¼ x� σN � Φ�1½FðxÞ� (5)

In these expressions, x is the original non-normal variant, Φ�1[.] is the
inverse of the standard normal cumulative distribution (CDF), F(x) is the
original non-normal CDF evaluated at x, φ�1[.] is the probabilistic den-
sity function of the standard normal distribution, and f(x) is the original
non-normal probability density ordinate at point x. In the case of corre-
lated non-normals, the ellipsoidal perspective (Fig. 1) and the con-
strained optimization approach still apply in the original coordinate
system, with the exception of the fact that non-normal distributions are
replaced by an equivalent normal hyper-ellipsoid, centered not at the
original mean of the non-normal distributions, but at the equivalent
normal mean μN.

Based on the reliability index, the probability of failure can be eval-
uated as follows:

pf � 1� φðβÞ (6)

In this expression, ϕ() refers the cumulative distribution function of the
standard normal variable.

The first and third terms under the square root sign in Eq. (3) are
equivalent standard normal vectors. Building on this, Low and Tang
(1997b, 2007) and Low (2004) developed a practical FORM procedure
using constrained optimization and proposed an efficient algorithm for
evaluation using the varying dimensionless number ni, recasting Eq. (3)
as follows:

Nomenclature

β reliability index σhmin least horizontal principal stress (MPa)
X set of random variables σHmax greatest horizontal principle stress

(MPa)
xi random variables Pb breakdown pressure (MPa)
μ mean values T rock tensile strength (MPa)
C covariance matrix Pp pore pressure (MPa)
F failure domain α Biot poroelastic parameters
R correlation matrix υ Poisson's ratio
σi standard deviation Ll limiting values of fracture length (m)
μi
N equivalent normal mean wl limiting values of maximum width

(m)
σi
N equivalent standard deviation L fracture length (m)

F(x) original non-normal CDF w maximum induced width (m)
φ�1 probabilistic density function pw pressure of wellbore (MPa)
f(x) original non-normal probability density Q injection rate (m3/

s)
ϕ() cumulative distribution function μ fluid viscosity(Pa⋅s)
cl fluid loss coefficient h fracture height (m)
ni varying dimensionless number t time (s)
G shear modulus of the rock (MPa) Φ�1 inverse of standard normal

cumulative distribution
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