
Contents lists available at ScienceDirect

Energy Policy

journal homepage: www.elsevier.com/locate/enpol

Reliability-constrained hydropower valuation☆

Antony Ware
The University of Calgary, 2500 University Avenue SW, Calgary, Alberta, Canada T2N 1N4

A R T I C L E I N F O

Keywords:
Hydropower
Electricity markets
Renewable energy
Valuation

A B S T R A C T

Maximizing the long-term value of hydropower generation requires management of uncertain reservoir inflows,
potentially variable constraints on outflows, and exposure to possibly wildly varying power prices. We describe a
stochastic dynamic programming approach to the quantification of reservoir reliability (for example, measures
of the risk of over-topping the reservoir or failing to satisfy downstream flow requirements) and a related ap-
proach to determining the reservoir flow strategy that maximizes expected revenue, subject to defined target
reliability levels.

1. Introduction

Hydropower generation has an important role to play as our energy
systems transition towards increasing reliance on renewable sources of
power. Apart from representing in themselves a major renewable en-
ergy source, the fact that hydropower facilities can be dispatched ex-
tremely rapidly (in contrast to nuclear, coal-fired and even natural gas
plants) means that they can help to offset the problems of intermittency
that are associated with wind and solar power. In addition, when pump
capability is included, the facility operates as a high-capacity battery
offering storage benefits to the system.

The flexibility offered by hydropower facilities has limits. There are
various kinds of constraints on the rate at which water can be allowed
to flow from the reservoir. These limits arise from consideration of both
the downstream impact of flow rates and the current level of water in
the reservoir and the anticipated impact of flowing (or not flowing)
water now on the reservoir reliability, i.e. its expected future ability to
satisfy flow constraints.

Three key uncertain quantities affect the long-term reliability and
value of the reservoir. Firstly, the amount of water flowing into the re-
servoir varies - from year to year and from day to day. Second, the
revenues available on the energy and ancillary markets (used by the
system operator to ensure stability of the system over short time scales)
vary from moment to moment. Third, the range of allowable flow rates,
which will be affected by the variable state of the river downstream
from the reservoir, as well as on other factors such as plant outages.
None of these quantities can be predicted with certainty for any specific
future date, particularly more than a few days in advance.

The primary goal of the model we present is to provide quantitative
estimates of both the reliability of the system and the marginal value of

the water in the system. In practice, this value is generated by revenue
from energy markets, ancillary markets (used by the system operator to
ensure stability of the system over short time scales) and, sometimes,
capacity markets (although in this work we consider only the energy
revenue). An important component of the value is the the optionality
that having water in the reservoir system provides - the flexibility to
choose when to flow the water in order to take advantage of high prices.
In this paper, the problem of determining how best to exploit that
flexibility to maximize both the expected reliability and the revenue in
the face of the uncertainties inherent in the system is formulated as a
problem of stochastic optimal control.

In the remainder of this section we review some of many applica-
tions of stochastic optimal control problems in the management of
hydropower systems, and introduce the particular hydropower facility
we will use as an example to illustrate the proposed modelling ap-
proach. In Section 2 we consider the initial problem of maximizing the
reliability of the system. This results in a ‘safety-first’ strategy, and al-
lows us to quantify the risk of failing to satisfy the operational con-
straints. In Section 3 we show how this can then be incorporated into a
revenue-optimizing strategy, constrained by the reliability. The final
section contains some concluding remarks.

1.1. Stochastic dynamic programming for hydropower systems

The use of stochastic dynamic programming in the context of hy-
dropower systems has a long history (see Yakowitz, 1982 for an early
review, and Wallace and Fleten, 2003 for a slightly more recent over-
view of applications to hydropower and other energy systems). The
work of Pereira and Pinto (1985), Pereira and Pinto (1991) has had a
significant influence on this field; their introduction of a stochastic dual

https://doi.org/10.1016/j.enpol.2018.03.053
Received 31 July 2017; Received in revised form 23 March 2018; Accepted 24 March 2018

☆ “This article is part of a Virtual Special Issue entitled 'Energy and Environment: Transition Models and New Policy Challenges in the Post Paris Agreement'.”
E-mail address: aware@ucalgary.ca.

Energy Policy xxx (xxxx) xxx–xxx

0301-4215/ © 2018 Elsevier Ltd. All rights reserved.

Please cite this article as: Ware, A., Energy Policy (2018), https://doi.org/10.1016/j.enpol.2018.03.053

http://www.sciencedirect.com/science/journal/03014215
https://www.elsevier.com/locate/enpol
https://doi.org/10.1016/j.enpol.2018.03.053
https://doi.org/10.1016/j.enpol.2018.03.053
mailto:aware@ucalgary.ca
https://doi.org/10.1016/j.enpol.2018.03.053


dynamic programming approach means that optimization problems
associated with complex hydropower systems can be tackled. The ap-
proximate encoding of piecewise linear constraints allows them to
lessen the impact of the ‘curse of dimensionality’. See Rebennack et al.
(2010a, 2010b) for many more recent examples, and Powell (2007) for
a comprehensive overview of approximate dynamic programming and
its applications.

Näsäkkälä and Keppo (2008) consider a Monte Carlo approach to
studying the medium- and long-term planning problem in the face of
inflow and price uncertainty using a simple parametrization for the
optimal production strategy, and assuming that the power is sold using
futures contracts with various tenors. Carmona and Ludkovski (2010)
also work in a Monte Carlo setting, making use of an optimal stopping
formulation of the stochastic dynamic programme.

Zhao and Davison (2009a), Zhao and Davison (2009b) use sto-
chastic optimal control to study the operation and valuation of pump
storage systems, assuming time-varying but deterministic prices, and
develop an approach for estimating the value of accurate hydrological
forecasts. Conversely, Bayón et al. (2009) develop an approach for
forecasting short-term prices, and study the impact of the quality of
such forecasts on optimal hydropower operation. Chen and Forsyth
(2008) also consider deterministic inflow rate but stochastic prices.
They study a finite difference method for solving the associated Ha-
milton-Jacobi-Bellman partial integro-differential equation, and prove
the convergence of the numerical scheme to the viscosity solution. They
are able to incorporate various operational constraints, and conclude
that failing to consider these ‘may considerably overestimate the value
of hydroelectric power plant cashflows’.

In this paper, stochastic prices, inflows and downstream constraints
are incorporated, and an approximate stochastic dynamic programming
approach developed in order to quantify reservoir reliability and de-
velop an operation strategy that maximizes expected revenue while
maintaining a given level of reliability.

1.2. Bighorn

In this work, we use the Bighorn hydropower facility as the setting
for the modelling and valuation approach we describe. This facility is
owned and operated by TransAlta Corp., and is situated on the North
Saskatchewan River in the foothills of the Rocky Mountains, west of
Red Deer in southern Alberta, Canada. It feeds from Abraham Lake,
which holds more than 1.1 million acre-feet of water in the operating
range of the 120MW hydropower facility. The water it releases passes
through Rocky Mountain House and Edmonton on its way—e-
ventually—to Hudson Bay. Inflow into the reservoir (i.e. Abraham
Lake) is highly seasonal. In the winter, there is little glacial melt, and
any upstream precipitation is in the form of snow and has little im-
mediate impact on water levels in the reservoir. The highest inflows
come during the spring runoff, when warmer temperatures lead to
melting snow and ice, and more precipitation in the form of rainfall.
This is evident in the 1985–2011 inflow data1 shown in Fig. 1, where
the top graph shows cumulative annual inflows, and the lower graph
shows daily inflow amounts. These data should be viewed with a
modicum of scepticism, however, since reliable measurements of inflow
amounts over short time periods are particularly difficult to obtain. This
is particularly evident during the winter months, where some days
appear to show significant volume reduction, far in excess of what
might be lost through processes such as sublimation.

There are some minimum and maximum flow constraints that must
be satisfied. The minimum flow constraints arise from the requirement
to provide sufficient water supply to the downstream users. Maximum
flow constraints arise from the need to respect the carrying capacity of

the downstream river system. Added to this, in Alberta, temperatures in
the winter months can fall to a level low enough that ice forms on the
river. When this happens, flow rates must be kept steady in order to
allow a ‘clean’ ice cover to form. Once this has happened, flow rates can
be steadily increased to ‘push’ the ice up and create a natural tunnel,
which, once established, will allow variable flows to occur underneath
the ice.

2. Reliability

In this paper, we seek to quantify the reliability of a hydropower
system. Koutsoyiannis (2005) discusses various formulations of the
reliability of such a system, and our quantification can be seen as an
extension of one setting of his framework. We consider failure of the
system to have occurred if the reservoir overtops its limits (so that
water is spilled in an uncontrolled fashion), or if the reservoir becomes
empty, and so is unable to satisfy minimum flow constraints. For a
given operation strategy, we consider the probability that failure will be
avoided over a time horizon T . We define the reliability to be the
maximum possible probability over all possible operation strategies.
Any strategy that results in this maximum reliability we refer to as a
safety-first strategy.

2.1. Modelling inflows and river states

The rate of inflow I t( ) on day t (measured in units of years) is
modelled as a log-normal random variable. Specifically, we have

∼I t N β t σ tln ( ) ( ( ), ( )),2 (1)

where the mean, β t( ), and the variance, σ t( )2 , are seasonally-varying
functions. They are modelled using trigonometric functions with fre-
quencies up to N and Nσ :
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Fig. 2 shows the fitted inflows, along with percentiles generated by the
functions β t( ) and σ t( )2 , with =N 6β and =N 4σ .

As described in Section 1, the ice cover downstream from the re-
servoir has a significant impact on the rate at which water can be re-
leased. This varies in an unpredicable way from year to year, with ice
typically forming somewhere between November and January, and
staying anywhere from a few weeks to a few months before breaking up
in the spring.

When ice is in the process of forming, it is important to keep the
flow consistent so that a stable ‘ice bridge’ can form, under which water
can continue to flow at a potentially higher rate.

We use a continuous-time discrete-space Markov chain to model the
state of the ice. We identify three ice states: 1: ‘clear’, 2: ‘forming’ and 3:
‘solid’. Under these states, flows are constrained to be within the limits
shown in Table 1 (given in cubic feet per second (cf/s)).

The probability of changing from one ice state to another is de-
termined by a transition rate λij, so that between two times t and +t h
the probability of a change from state i to state j is +λ h o h( )ij . We
make each λij time-dependent so as to capture the way in which the
probability of being in each of the various ice states changes depending
on the time of year. Fig. 3 show the transition rates and resulting

1 Data available from the HYDAT database https://ec.gc.ca/rhc-wsc/default.asp?n=
9018B5EC-1.
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