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a b s t r a c t 

A generalised probabilistic framework is proposed for reliability assessment and uncer- 

tainty quantification under a lack of data. The developed computational tool allows the 

effect of epistemic uncertainty to be quantified and has been applied to assess the relia- 

bility of an electronic circuit and a power transmission network. The strength and weak- 

ness of the proposed approach are illustrated by comparison to traditional probabilistic 

approaches. In the presence of both aleatory and epistemic uncertainty, classic probabilis- 

tic approaches may lead to misleading conclusions and a false sense of confidence which 

may not fully represent the quality of the available information. In contrast, generalised 

probabilistic approaches are versatile and powerful when linked to a computational tool 

that permits their applicability to realistic engineering problems. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Nowadays it is generally well accepted that estimating the effect of uncertainty is a necessity, e.g. due to variation in 

parameters, operational conditions and in the modelling and simulations [1,2] . In practical applications, situations are com- 

mon where the analyst has to deal with poor quality data, few available specimens or inconsistent information. A typical 

example is a situation where very expensive samples have to be collected, such as field proprieties of a deep reservoir [3] or 

performance of satellites [4] . In these cases, the amount of data will be scarce due to economic and time constraints and 

in several cases, expert elicitation (i.e. the best estimate of an expert) may be the only viable way of carrying on with the 

analysis [5] . 

As a consequence, strong assumptions may be needed to apply classical probabilistic methods given poor information 

quality, which can lead to erroneous reliability estimations and a false sense of confidence [6] . Generalised approaches, 

which fit in the framework of imprecise probability [6] , are powerful methodologies for dealing with imprecise information 

and lack of data. These methodologies can be coupled to traditional probabilistic approaches in order to give a different 

prospective on the results, whilst avoiding the inclusion of unjustified assumptions and enhancing the overall robustness of 

the analysis. Generalised methods are rarely used in practice and this is probably due to lack of proper guidance, simulation 

tools, as well as some misconception in the interpretation of the results. Further comparison of different methodologies, 

both in theoretical aspects and in their applicability to real case studies, are required. 
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An original throughout analysis of the applicability of different methodologies to deal with different level of imprecision 

is presented. In addition, this paper presents a novel computational framework for generalised probabilistic analysis that 

can be adopted to deal with low quality data, few available samples and inconsistent information. Efficient and generally 

applicable computational strategies have been developed and implemented into OpenCossan [7] . The proposed framework 

is applied to assess the reliability of an electric series RLC circuit (a problem proposed by the NAFEMS Stochastics Working 

Group [8] ) and of a power transmission network, both affected by a lack of data. 

Generally speaking, different system performance indicators may be affected very differently by the same (lack of) data. 

The extent of a lack of information is not a-priori quantifiable and depends on the context of the analysis. The proposed 

approach is used to assess the information quality by comparison to classical probabilistic results and with respect to system 

reliability estimates. One of the main contributions of this work is a detailed comparison between classical and generalised 

probabilistic approaches from a straightforward applicative point of view and under different levels of imprecision. This 

serves as guidance for engineering practitioners to solve problems affected by a lack of data. 

The rest of the paper is structured as follows: Section 2 presents the mathematical framework. In Section 3 , a synthetic 

overview of the numerical framework and the proposed approach is proposed. The NAFEMS reliability problem is described 

and solved in Section 4 . A lack of data problem for power network reliability estimation is solved in Section 5 . A discussion 

on the limitations of the different approaches is presented in Sections 6 and 7 closes the paper. 

2. Mathematical framework 

Uncertainty is generally classified into two categories, aleatory and epistemic uncertainty. Aleatory uncertainty (Type I or 

irreducible uncertainty), represents stochastic behaviours and randomness of events and variables. Hence, due to its intrinsic 

random nature it is normally regarded as irreducible. Some examples of aleatory uncertainty are future weather conditions, 

stock market prices or chaotic phenomenon. Epistemic uncertainty (Type II or reducible uncertainty), is commonly associ- 

ated with lack of knowledge about phenomena, imprecision in measurements and poorly designed models. It is considered 

to be reducible since further data can decrease the level of uncertainty, but this might not always be practical or feasible. In 

recent decades, effort s were f ocused on the explicit treatment of imprecise knowledge, non-consistent information and both 

epistemic and aleatory uncertainty. The methodologies are discussed in literature by different mathematical concepts: Evi- 

dence theory [9] , interval probabilities [10] , Fuzzy-based approaches [11] , info-gap approaches [12] and Bayesian frameworks 

[13] are some of the most intensively applied concepts. 

In this paper, Dempster-Shafer structures and probability boxes are used to model quantities affected by epistemic un- 

certainty, by aleatory uncertainty, or by a combination of the two. In addition, the Kolmogorov–Smirnov test [14] and Kernel 

Density Estimator [15] have been used to characterise the parameter uncertainty in case of small sample sizes. 

2.1. Dempster–Shafer structures and probability boxes 

The Dempster–Shafer (DS) theory is a well-suited framework to represent both aleatory and epistemic uncertainty. The 

difference between the axioms of classical probability theory and the DS theory is that the latter slacken the strict assump- 

tion of a single probability measure for an event. It can be seen as a generalisation of Bayesian probability [16] . Mathemati- 

cally, a Dempster–Shafer structure on the real line R can be identified with a basic probability assignment, that is a map as 

follows: 

m : 2 

R → [0 , 1] (1) 

where the probability mass is m ([ x i , x i ]) = p i for each focal element [ x i , x i ] ⊆ R with i = 1 , . . . , n . m ( S ) is equal 0 for the 

empty set S = ∅ and for S � = [ x i , x i ] , such that p i > 0 ∀ i and 

∑ 

i p i = 1 . The upper bound on probability is referred as plau- 

sibility and the lower bound as belief, the cumulative plausibility function Pl ( x ) and cumulative belief function Bel ( x ) can 

be computed as P l(x ) = 

∑ 

x i ≤x 
m i and Bel(x ) = 

∑ 

x i ≤x 

m i . The continuous equivalents of DS structures are the so-called proba- 

bility boxes or P-boxes. Mathematically, a P-box is a pair of lower and upper cumulative distribution functions [ F X , F X ] 

from the possibility space � to [0,1] such that F X (x ) ≤ F X (x ) ∀ x ∈ � and � is a classical probability space. The upper and 

lower bounds for the CDFs are F X = P (X ≤ x ) and F X = P (X ≤ x ) , respectively. Note that the probability distribution family 

associated with the random variable x can be either specified or not specified. The former are generally named distribu- 

tional P-boxes, or parametric P-boxes, the latter are named distribution-free P-boxes, or non-parametric P-boxes [13] . The 

wider the distance between the upper and the lower bound is, the higher the incertitude associated to the random vari- 

able. P-boxes and DS structures offer a straightforward way to deal with multiple and overlapping intervals, inconsistent 

sources of information and small sample sizes. The drawback is that the computational cost of propagating P-boxes and DS 

structures through the system is generally quite high, especially for a large number of intervals (i.e. focal elements) and 

time-consuming models. Nevertheless, the quantification approaches are generally not-intrusive and hence applicable to any 

model. 
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