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a b s t r a c t

Given a graph G in which each edge fails independently with probability q ∈ [0, 1], the all-
terminal reliability of G is the probability that all vertices of G can communicate with one
another, that is, the probability that the operational edges span the graph. The all-terminal
reliability is a polynomial in q whose roots (all-terminal reliability roots) were conjectured
to have modulus at most 1 by Brown and Colbourn. Royle and Sokal proved the conjecture
false, finding roots of modulus larger than 1 by a slim margin. Here, we present the first
nontrivial upper bound on the modulus of any all-terminal reliability root, in terms of the
number of vertices of the graph.We also find all-terminal reliability roots of largermodulus
than any previously known. Finally, we consider the all-terminal reliability roots of simple
graphs; we present the smallest known simple graph with all-terminal reliability roots of
modulus greater than 1, and we find simple graphs with all-terminal reliability roots of
modulus greater than 1 that have higher edge connectivity than any previously known
examples.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction and background

Let G = (V , E) be an undirected, finite, loopless, connected (multi)graph in which each edge fails independently with
probability q ∈ [0, 1] and vertices are always reliable. The all-terminal reliability of G, denoted Rel(G; q), is the probability
that all vertices of G can communicate with one another; that is, the probability that the operational edges span the graph.
All-terminal reliability is awell-studiedmodel of network robustness, andmuch research has been carried out on a variety of
algorithmic and theoretical aspects of themodel including algorithmic complexity, polynomial time algorithms for restricted
families, efficient bounding procedures, the existence of optimal graphs, and analytic properties (when the all-terminal
reliability of a graph is viewed as a function of q). See [8], for example, or [3] for a more recent survey on all-terminal
reliability. Note that all-terminal reliability is often studied in terms of p = 1−q, the probability that each edge is operational,
but our results on all-terminal reliability are easier to state and prove in terms of q, so we deal exclusively in the variable q
in this article.

The all-terminal reliability of a connected graph Gwith edge set E, denoted Rel(G; q), is always a polynomial in q of degree
(at most)m = |E|, as a subgraph with operational edges E ′

⊆ E arises with probability

(1 − q)|E
′
|q|E|−|E′

|.

Summing this probability over all sets E ′ for which all vertices of G can communicate gives the all-terminal reliability of G.
The fact that the polynomial has degree exactlym will be seen later from the H-form of the polynomial.
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It is natural to inquire about the nature and location of the roots of all-terminal reliability polynomials, called all-terminal
reliability roots or ATR roots henceforth. ATR roots were noted to have modulus at most 1 (in q) for small graphs, and it was
conjectured in [2] that thiswas the case for all graphs. This contrasts sharplywithwhat is known for other graph polynomials,
such as chromatic polynomials [15], independence polynomials [5], and domination polynomials [6], where the roots are
dense in the complex plane. Despite some results and generalizations in the affirmative [7,16], the conjecture for ATR roots
was shown to be false in [14]. However:

• The ATR roots provided were only outside of the unit disk by a slimmargin; the largest modulus of an ATR root found
was approximately 1.04.

• The simple graphswith ATR roots outside of the unit diskwere quite large, with the smallest having over 1500 vertices
and over 3000 edges.

• All of the simple graphswith ATR roots outside of the unit disk hadmany vertices of degree 2, and it is unclearwhether
all simple graphs with ATR roots outside of the unit disk have such low edge connectivity.

Finally, although ATR roots of modulus greater than 1 were found, no general upper bound on the modulus of an ATR root
was given.

In this article, we continue the exploration of the location of ATR roots. In Section 2, we find a nontrivial (though non-
constant) bound on the modulus of any ATR root of a graph G in terms of the order of G (this extends a weaker result in [9]).
In Section 3.1, we study graphs with ATR roots of modulus greater than 1, finding graphs with ATR roots of greater modulus
than any previously known. Finally, in Section 3.2 we consider simple graphs with ATR roots of modulus greater than 1. We
find a smaller example of a simple graph with ATR roots outside of the unit disk, and we find simple graphs that have ATR
roots outside of the unit disk and have much higher edge connectivity than any previously known examples.

We shall need some background on reliability for the next section. For a graph G of order n and size m (that is, with n
vertices andm edges), we can express the all-terminal reliability polynomial of G as

Rel(G; q) =

m−n+1∑
i=0

Fiqi(1 − q)m−i,

where Fi denotes the number of subsets of E of cardinality iwhose removal leaves the graph connected. The collection of all
such subsets ofG is called the cographicmatroid ofG, and the sequence (F0, . . . , Fm−n+1) is called the F-vector of the cographic
matroid ofG (see [8] formore details). The generating polynomial of the F-vector ofG is called the F-polynomial ofG, denoted
F (G; x). It is known that one can rewrite the polynomial in its H-form as

Rel(G; q) = (1 − q)n−1
m−n+1∑
k=0

Hkqk.

The sequence (H0, . . . ,Hm−n+1) is called the H-vector of the cographic matroid of G. Moreover, the generating polynomial

H(G; x) =

m−n+1∑
k=0

Hkxk

of the H-vector turns out to be an evaluation of the well-known two-variable Tutte polynomial (see [12]):

T (G; 1, x) = H(G; x). (1)

There is a relatively new interpretation to the coordinates of the H-vector of a cographic matroid that we shall find
particularly useful. We describe the chip-firing game that yields this new interpretation. Let G = (V , E) be a connected
multigraph without loops, and let w denote a special vertex of G. A configuration of G is a function θ : V → Z for which
θ (v) ≥ 0 for all v ̸= w and θ (w) = −

∑
v ̸=wθ (v). For v ̸= w, the number θ (v) represents the number of chips on vertex v. We

imagine that the special vertexw has infinitelymany chips. In configuration θ , a vertex v ̸= w is ready to fire if θ (v) ≥ deg(v);
vertex w is ready to fire if and only if no other vertex is ready. Firing vertex u changes the configuration from θ to θ ′, where

θ ′(u) = θ (u) − deg(u)

and for v ̸= u

θ ′(v) = θ (v) + l(u, v),

where l(u, v) is the number of edges between u and v in G. A configuration is stable when θ (v) < deg(v) for all v ̸= w; that
is, if and only if w is ready to fire.

A firing sequence Θ = (θ0, θ1, . . . , θk) is a sequence of configurations in which θi is obtained from θi−1 by firing one
vertex that is ready to fire for each i ∈ {1, . . . , k}. It is nontrivialwhen k > 0. We write θ0 → θk when some nontrivial firing
sequence startingwith θ0 and endingwith θk exists. Configuration θ is recurrent if θ → θ . Stable, recurrent configurations are
called critical. For a critical configuration θ , a critical sequence is a legal firing sequence of minimal length that makes θ recur.
Merino [11,12] proved the following surprising result which connects the critical configurations to all-terminal reliability:
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