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a b s t r a c t

This paper develops a convex programming (CP) framework for optimal sizing and energy management
of smart home with battery energy storage system (BESS) and photovoltaic (PV) power generation, for
the goal of maximizing home economy, while satisfying home power demand. We analyse the historical
electric energy data of three different homes located in California and Texas, and indicate the necessity
and importance of a BESS. Based on the structures and system models of these smart homes, the CP
problem is formulated to rapidly and efficiently solve the optimal design/control issue. Based on different
time horizons, maximal powers to grid, prices of BESS, the optimal parameters of BESS and its potential
to electric energy cost savings are systematically compared for the three homes. A deviation analysis
between the results obtained by CP and DP (dynamic programming) is also presented.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The present energy crisis (increasingly severe energy shortage
and supply instability), and environmental crisis (global warming
and air pollution) have promoted the rapid development of inte-
grating renewable energy with the grid [1,2]. However, some
renewable energy, such as solar and wind energy, is intermittent
and unstable in nature due to metrological conditions [3,4].
Consequently, researchers have focused on developing effective
control strategies to improve the performance and economy for
buildings and homes integrating renewable energy [5e8]. This
paper develops an optimal design/control method for battery sizing
and energy management of smart home.

The existing literature, e.g., the forgoing work, has presented
several optimization methods, such as mixed-integer linear pro-
gramming (MILP) [9,10], rolling horizon strategy [11], particle
swarm optimization (PSO) approach [12], geometric program [13],
model predictive control (MPC) [14,15], dynamic programming
(DP) [16], adaptive dynamic programming (ADP) [17], and sto-
chastic dynamic programming (SDP) [18], for creating efficient
operational schedules or making good consumption and

production decisions to home energy management (HEM). An
optimal HEM strategy under dynamic electrical and thermal con-
straints is developed through solving an MILP in Ref. [9], which is
able to provide an optimal solution to power consumption and
management of renewable resources. Similarly, considering
photovoltaic (PV) arrays, battery energy storage, and electric
vehicle (EV) in Ref. [10], the effects of the accurate SSUEP (Set of
Sequential Uninterruptible Energy Phases)-based model on the
day-ahead energy management of a residential microgrid are
formulated as an MILP optimization framework. A novel energy
management system based on a rolling horizon strategy for a
microgrid is proposed with PV panels, two wind turbines, a diesel
generator, and an energy storage system in Ref. [11]. An improved
PSO approach is introduced to optimize distributed energy re-
sources operation schedules for a smart home case study in
Ref. [12]. The impacts of the response capability levels of consumers
on the economic integration of distributed PV power in smart
homes, and the impacts of PV and battery capacities on consumers
power expenses are analyzed using non-cooperation game theo-
retical power market complementarity model in Ref. [13]. Based on
short-term forecasts of residential renewable power generation, a
dynamic HEM algorithm is put forward in Ref. [14] for decreasing
the total grid energy cost while maximizing user comfort. Both
simulation and experimental results show the ability of the devised
algorithm to control both sources and loads. A nonlinear predictive
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energy management method for buildings with PV system and
battery storage is proposed in Ref. [15], which forecasted house
load demand via artificial neural networks. Based on highly
resolved energy consumption models, an automated dynamic en-
ergy management framework is established in Ref. [16] to find the
optimal schedule of residential controllable appliances, where DP is
utilized to find the global solution. A computationally feasible and
self-learning optimal control scheme for a residential energy sys-
tem with batteries is devised in Ref. [17], the idea of which is to
approximate DP solution by using neural networks. A probability
distribution model combining household power consumption, EV
home-charging, and PV power production is built using a convo-
lution approach to merge three separate existing probability dis-
tribution models in Ref. [18]. In Ref. [4], ZigBee technologies are
exploited for comprehensive field tests, including monitoring PV
and wind energy systems, and energy management of buildings/
homes. The literature provides a number of approaches for energy
management of smart home with renewable energy, almost all of
which share a common goal, namely, to meet overall home electric
power demand while minimizing the total operational energy cost.
Few studies explored the optimal battery size and control strategy
simultaneously. Furthermore, a single home was often considered
without a comparision of multiple homes with different electricity
supply/demand patterns.

This paper constructs an optimal design/control framework for
exploring multiple smart homes with battery energy storage sys-
tem (BESS) and PV arrays power generation. The key challenge
addressed by this paper is to simultaneously optimize the battery
size and energymanagement strategywith the consideration of the
cost of BESS, computational efficiency, and home electricity dif-
ference. An emerging effective tool, convex programming (CP),
which can rapidly and efficiently optimize both management
strategy and parameters, as opposed to many other methods
generally focusing on only controls, has been applied by re-
searchers [19e21]. Demand response (DR) implementation
considering a single home with different appliances is modeled
using CP to minimize electricity payment in Ref. [22]. Similarly, A
later study in Ref. [23] formulates a CP problem to minimize elec-
tricity payment and waiting time under real-time pricing for a
multi-agent system, in order to evaluate optimal residential DR
implementation in a distribution network. The previous two
studies, however, do not involve optimal component design.
Nevertheless, CP has been successfully applied to simultaneously
optimize component size and energy controller for vehicles [24,25].
In this article, CP is leveraged to rapidly and efficiently optimize
both HEM strategy and BESS size. In our previous study [26], a CP
framework was built for the optimal integration of a hybrid solar-
battery power source into smart home nanogrid with PEV load.
The main differences between this endeavor and [26] (i.e., major
contributions) include (i) the optimization results of three different
homes with PV arrays located in California and Texas are system-
atically compared, instead of analyzing a single home in most of
existing studies, and (ii) a deviation analysis between the outcomes
procured by CP and DP is carried out to showcase the computa-
tional efficiency and effectiveness of CP.

The remainder of the paper is arranged as follows. Section 2
analyses the historical electric energy data of the three homes.
The structures and models are described in Section 3. The CP
problem is formulated in Section 4. The optimization results are
discussed and contrasted in Section 5, followed by conclusions
summarized in Section 6.

2. Historical data analysis

In order to reduce the cost of electric energy and carbon

emissions, residents are seriously concerned about installing PV
panels on the roof of their houses, especially in the area with high
electricity price and abundant sunshine, i.e., California, USA. Due to
the high price of battery, some of the residents only stall PV arrays
without BESS. They directly sell the redundant PV power to the
utility grid, since PV cannot storage energy by itself.

We analyse the PV power supply data and home load data from
three different family homes with PV arrays. The collected data of
Home 1 correspond to date range from 2014-01-01 to 2014-12-31
in California, US [27]. The collected data of Home 2 and Home 3
correspond to date range from 2016-01-01 to 2016-12-31 accessed
from the Pecan Street Inc. Dataport [28]. The hourly grid power (the
home load power minus the PV power) of the three homes on each
day, as well as their averages, are shown in Fig. 1. The hourly grid
power of the three homes vary from �2.26 kW to
4.58 kW, �4.26 kW to 7.42 kW, and �3.37 kW to 7.07 kW,
respectively. The peak power to the grid of the three homes always
happen from 10:00e14:00, 8:00e17:00, and 10:00e18:00,
respectively, owing to the PV power generation. The peak power
from the grid always occurs from 18:00e1:00 for Home 1, from
17:00e24:00 for Home 2, from 6:00e9:00 and 17:00e23:00 for
Home 3, due to the heavy home load demand.

At present, there are two types of electric rate plans for resi-
dential houses from Pacific Gas and Electric (PG&E) Company in
California, tiered rated plan and time-of-use rate plan. Referring to
the non-tiered, time-of-use plans, the hourly time-varying electric
price in California, as well as that in Austin, Texas, is shown in Fig. 2-
(a) [29e32]. The PG&E electric price is lowest (10 cents/kWh) from
23:00 to 7:00, and more expensive during Peak (43 cents/kWh,
14:00e21:00) and Partial-Peak (22 cents/kWh, 7:00e14:00 and
21:00e23:00) periods. The Austin Energy electric price is lowest
(2.18 cents/kWh) from 22:00 to 6:00, and more expensive on Peak
(12.2 cents/kWh, 14:00e20:00) and Mild-Peak (7.13 cents/kWh,
6:00e14:00 and 20:00e22:00) hours. Obviously, the PG&E electric
price is more expensive than the Austin Energy price. Fig. 2-(b to d)
plot the hourly electric energy costs for the three homes in one year
on each day and its average [29e33]. It is evident that all the three
houses sell electric energy to the grid during Partial-Peak period
and buy it during Peak period. If having a BESS, users can store the
redundant PV power and buy electric energy with low price for the
use of Peak period. The BESS can not only reduce household electric
cost, but also supply electric power to the house during lacking of
electric power, because of blackout [26]. Next, we apply CP
approach to design the main parameters of BESS and synthesize an
energy management controller.

3. Configuration and models

3.1. Configuration

We consider a single smart home with BESS and PV arrays, as
illustrated in Fig. 3 [26,34]. The smart home electric energy system
comprises house appliances, utility grid, a home BESS, PV arrays,
and associated power electronics. The power flow among them is
managed by a smart home energy management system (SHEMS).
Because the original house has had the PV arrays, but without BESS,
an important mission is to determine desired parameters of the
home BESS.

3.2. System model

The power balance equation of the smart homewith home BESS
and PV power supply is
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