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h i g h l i g h t s

� Multi-location charging behavior of PEV is modeled.
� Detailed PEV powertrain models are considered.
� MCLP strategy can reduce the charging load peak by 47%.
� Charging during price valley time can meet most of PEVs' travel demand.
� V2G would be profitable if battery replacement cost decreases by 25%.
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a b s t r a c t

Modeling PEV travel and charging behavior is the key to estimate the charging demand and further
explore the potential of providing grid services. This paper presents a stochastic simulation methodology
to generate itineraries and charging load profiles for a population of PEVs based on real-world vehicle
driving data. In order to describe the sequence of daily travel activities, we use the trip chain model
which contains the detailed information of each trip, namely start time, end time, trip distance, start
location and end location. A trip chain generation method is developed based on the Naive Bayes model
to generate a large number of trips which are temporally and spatially coupled. We apply the proposed
methodology to investigate the multi-location charging loads in three different scenarios. Simulation
results show that home charging can meet the energy demand of the majority of PEVs in an average
condition. In addition, we calculate the lower bound of charging load peak on the premise of lowest
charging cost. The results are instructive for the design and construction of charging facilities to avoid
excessive infrastructure.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Major studies have articulated that transportation electrification
is necessary for slowing down the climate change around the world
[1]. California's Governor Brown has also released the zero-
emissions vehicle (ZEV) mandate, targeting the deployment of 1.5
million ZEVs by 2025, the vast majority of which will be plug-in
electric vehicles (PEVs) [2]. Integration of such a large number of
PEVs will cause variability and uncertainty to electric power sys-
tems. Lack of accurate forecasting on PEVs' energy and power

demand will also result in excessive or insufficient infrastructure of
charging facilities [3]- [4].

In order to simulate PEV charging load, we need to incorporate
both driving patterns and charging patterns. One solution is to use
an agent-based simulation toolbox (such as MATSim [5], Aimsun
[6], etc.) and combinewith some charging strategies to simulate the
behavior of PEVs. However, when the number of PEVs is large,
computation time will be an obstacle if we directly simulate each
PEV's behavior [7].

Compared with this method, using a probabilistic model would
significantly relive the computation burden. It also has more pre-
dictive power than purely using historical data [8]. In Ref. [9], travel
patterns of the PEVs were modeled by three variables: departure
time, arrival time and total travel distance. The dependence
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structure between the variables was modeled using a normal
copula function. But the authors assumed that all trips started from
home and ended at home. In Refs. [10,11], the authors modeled the
spatial and temporal distributions of PEV charging load for public
charging stations. However, charging loads at home and work-
places, where the average parking time is more than 16 h [12], are
not studied. In Ref. [13], the authors proposed a statistical modeling
approach to generate daily driving mission sets. The temporal
distributions of departure time and arrival time are modeled in the
form of chi-square distribution and conditional normal distribution
respectively. But the spatial distributions are not discussed in the
paper. In Refs. [14e16], the distribution of start charging time was
considered as a crucial factor for PEV charging load profiles. Certain
distribution (e.g. normal distribution) is used to model PEV plug-in
time. However, these studies do not include the information on
parking locations and exact time of each trip. The absence of
coupled temporal and spatial information will hinder us from
accurately analyzing charging load profiles, if PEV can charge at
multiple locations.

In order to tackle the above problems which are mainly caused
by the incomplete description of travel patterns, we need to
consider the detailed information of each trip, including start time,
end time, start location, end location and trip distance. One effec-
tive tool is the trip chain, which is for describing the features of
multiple travel activities of a day [17]. The trip chain model has
beenwidely adopt for analysis of public transport usage [18], travel
behavior [19], and trip mode choice [20]. Trip chain modeling is
heavily dependent on the travel survey data. Fortunately, the Na-
tional Household Travel Survey (NHTS) dataset [21], which contains
a fairly large number of vehicle driving data, provides us a good
opportunity to develop a trip chain generation method. In our
previous work [22], a trip chain generation method was presented.
But the method could not account for the correlations between
different travel patterns. In addition, the impact of charging load on
the power grid was not studied. In Ref. [23], trip chain is used to
model the spatial randomness of PEV movement. However, the
coupled relationship between location and time cannot be
captured by the proposed method, and each trip chain is limited to
contain either 2 or 3 trips. Most of publications mentioned above
assume that the energy consumption of individual PEV is propor-
tional to driving distance. However, the energy consumption is
obviously related to some detailed information of the trip like
speed, acceleration, terrain, etc. This oversimplification may lead to

an inaccurate estimation on PEV charging load.
In this paper, we model the driving and charging behavior of

individual PEVs to generate temporal and spatial grid-scale impact
predictions. Firstly, we analyze the NHTS dataset to explore the
correlations and distributions of different factors. Naive Bayes
model is used to capture the stochastic nature of travel behavior
and account for the correlations between different travel patterns.
Monte Carlo method is applied to generate PEV's daily trip chain,
including the information of start time, end time, start location, end
location and distance of each trip. We validate the proposed
methodology by comparing the simulated data to the real data. In
order to get an accurate estimation on the charging load based on
trip chains, we use a detailed powertrain model to calculate the
energy consumption and then simulate the multi-location charging
load with different charging strategies. Three factors (the battery
capacity, daily driving distance and the off-peak price duration),
which have great influence on the charging load, are analyzed. To
be specific, the contributions of this paper are threefold:

1) Multi-location charging behaviors of PEVs are studied using the
real-world data. A trip chain generation method is proposed
based on the Naive Bayes model, which are effective to process
the activity-based transportation data [24] and can capture the
stochastic nature of travel behaviors. Temporally and spatially
coupled itineraries can be generated by the proposed method.

2) Compared with previous literature [9e16,22,23], the proposed
methodology incorporates the detailed powertrain model to
estimate the second-by-second energy consumption on trip-
specific driving cycles which include the information on
speed, acceleration, terrain, etc.

3) The impacts of multi-location charging load in different sce-
narios are evaluated. The results are instructive for the design
and instruction of charging facilities. Meanwhile it provides a
reference to set the length of off-peak time to avoid new peaks
caused by PEV charging.

The rest of the paper is organized as follows: The trip chain
model is introduced in Section 2. In Section 3, we present a Naive
Bayes based simulation method to generate PEV itineraries for a
whole day. Then themethod is validated in Section 4. Charging load
simulations are shown in Section 5. Finally, conclusions are drawn
in Section 6.

Nomenclature

Dj Random variable, distance of trip j
Gj Random variable, type of trip j
Lej Random variable, end location of trip j
Lsj Random variable, start location of trip j
N� Initial value of the remaining times for arriving home
Nj Random variable, remaining number of times for

arriving home before trip j
Td
j Random variable, duration of trip j

Te
j Random variable, end time of trip j

Tp
j Random variable, parking duration after trip j

Ts
j Random variable, start time of trip jbdj Generated driving distance of trip jblej Generated end location of trip j

blsj Generated start location of trip j

btdj Generated duration of trip j

btej Generated end time of trip j

btpj Generated parking duration after trip j

btsj Generated start time of trip j

dj Realization of random variable Dj
gj Realization of random variable Gj
j Trip index, j ¼ 1;2;…; J
lej Realization of random variable Lej
lsj Realization of random variable Lsj
nj Realization of random variable Nj
tdj Realization of random variable Td

j
tej Realization of random variable Te

j
tpj Realization of random variable Tp

j
tsj Realization of random variable Ts

j
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