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A B S T R A C T

A distribution-free approach is proposed to estimate the fracture size distribution from a given trace length
distribution, assuming that the fracture network can be represented by a Poisson-disc model. This approach
directly works on the experimental distribution of the observed trace lengths (corrected from sampling biases)
and does not need to choose a parametric model for the trace length or fracture diameter distributions. It is more
robust than existing models and provides an unbiased estimate of the cumulative distribution function of the
fracture diameters. Its simplicity of use, accuracy and versatility are illustrated through synthetic examples.

1. Introduction

A comprehensive understanding of fracture networks is critical to
the economic development of underground mining (cave ability, water
drainage, roof stability, fragmentation, gas ventilation, flow gravity),
open pit mining (slope stability, water drainage, blast ability, solution
mining, in situ leaching), tailing dam (environmental aspects), oil and
gas reservoir engineering (fractured reservoirs and unconventional re-
servoirs), generation of heat and vapor from geothermal reservoirs,
management of groundwater resources and underground nuclear
wastes disposal. The characterization of fracture networks is one of the
most important parts of the engineering characterization of rock
masses. The fracture properties that have the greatest influence at the
design stage are location, orientation, size, frequency, surface geo-
metry, genetic type and infill material [31,32].

One of the most interesting parameters of fracture networks is the
fracture intensity, i.e. the mean area of fractures per unit volume [10].
A fixed fracture intensity can be the result of very different scenarios,
such as a network of many small fractures or a network of few large
fractures. As an example, for a given fracture intensity, there is a better
connectivity with a few large fractures than with many small ones and,
in terms of fragmentation, the size of blocks that are results of the in-
tersections of the fracture network will change with different scenarios
of the fracture sizes. Hence it is important to accurately estimate the
distribution of fracture sizes.

To reach this objective, the available information usually consists of
surface observations, namely trace lengths measured on exposures, such
as natural outcrops, rock cuts and tunnel walls. One can distinguish three

types of surface samplings: (1) scan line sampling that measures the trace
lengths of the fractures that intersect a line drawn on the exposure; (2)
circle sampling that measures the trace lengths of the fractures that in-
tersect a circle drawn on the exposure; and (3) window or area sampling
that measures the trace lengths of the fractures within a finite size area
(such as a rectangle or a circular window) [3,11,8].

This paper focuses on the estimation of the fracture size distribution
from the trace length distribution. It is outlined as follows. Section 2
presents the hypotheses and problem setting and a review of existing
approaches for modeling the fracture size distribution knowing the
trace length distribution. An alternative approach and its computa-
tional implementation are then introduced in Section 3. Numerical
experiments on simulated fracture networks are presented in Section 4
to demonstrate the applicability, accuracy and robustness of the pro-
posed approach. A general discussion and conclusions follow in Section
5.

2. State of the art

2.1. Modeling assumptions and problem statement

By setting up an object at each point of a 3D Poisson process, a
Boolean model is obtained [27,28]. This object can be the same at every
point or can be random, with a different shape, size and/or orientation.
For fracture networks, the Boolean model often uses a circular disc as
the object, which is known as the Poisson-disc model. This model has
been first used for rock mechanics application by Baecher et al. [2]. The
model parameters are the intensity of the Poisson point process, which
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gives the average density of the points located in some region of space,
and the joint distribution of the fracture orientations and fracture dia-
meters. To enrich the model, other parameters such as fracture aperture
and thickness could also be considered, which can be correlated with
the fracture diameters [26,6], but will be out of the scope of this work.

The Poisson-disc model relies on the following assumptions:

(1) The fractures are modeled as two-dimensional circular discs scat-
tered in the three-dimensional space, with random positions, dia-
meters and orientations.

(2) The fracture diameters are independent and identically distributed
(i.i.d.).

(3) The fracture orientations are independent and identically dis-
tributed. We do not assume any specific restriction on this dis-
tribution; in particular, the distributions of the fracture dips and dip
directions can cover the full ranges of angles (0-90° for the dips and
0-360° for the dip directions) or any parts of these ranges.

(4) The fracture centers form a Poisson point process whose intensity is
constant in space (homogeneous process).

These assumptions are basically the same as that used by Baecher
et al. [2], Kulatilake and Wu [21], Zhang and Einstein [45], Song and
Lee [40], Jimenez-Rodriguez and Sitar [18] and Song [38], among
others. Using stereological considerations, Warburton [44] established
the following relationship between the diameter distribution of the
fractures with given orientation α (direction of the fracture pole, re-
presented as a point of the 2-sphere S2) and the distribution of their
trace lengths on a given plane P:
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where f l( )α
P( ) is the probability density function (for short, pdf) of the

trace lengths on plane P induced by the fractures with orientation α,
while μD(α) and gα(δ) are the expected value and the pdf of the dia-
meters of such fractures with orientation α.

If one further assumes that the fracture diameter and fracture or-
ientation are independent, then gα(δ) is actually independent of α and
can be denoted as g(δ). Under this additional assumption, the pdf of the
trace lengths induced by all the fractures on plane P is found by in-
tegrating Eq. (1) over all the possible orientations on the 2-sphere S2,
which gives
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where f(l) is the pdf of the trace lengths on plane P induced by all the
fractures, irrespective of their orientations, μD is the mean fracture
diameter, and g(δ) is the pdf of the fracture diameters.

Note that the probability density function f does not depend on the
particular plane P that has been chosen for observing the fracture trace
lengths, as long as fracture diameters and fracture orientations are in-
dependent [42]. It corresponds to the pdf of the trace lengths observed
on the whole plane P (equivalently, on a sampling window with an
infinite size and with fixed and known orientation), which will be re-
ferred to as the “true” trace length pdf.

In practice however, trace lengths are measures in sampling win-
dows with finite sizes and only a fraction of the fracture traces within
the window may be measured. Accordingly, the measured trace length
distribution usually differs from the true trace length distribution and
suffers from orientation, size, truncation and censoring biases
[3,11,33,21]. Several approaches have been proposed in the past dec-
ades to correct these sampling biases, which are out of the scope of this
work (e.g., [44,33,30,25,21,43,29,34,40,46]).

In the following, the true trace length distribution (after correcting

from sampling biases) will be supposed known. The problem is there-
fore to invert the integral in Eq. (2), in order to express the diameter
probability density function (g) as a function of the true trace length
probability density function (f).

Before proceeding, it is interesting to mention that the previous
model assumptions can be weakened. First, the results further presented
remain valid if the fracture diameters, fracture orientations and Poisson
intensity are replaced by independent stationary ergodic random fields.
Ergodicity guarantees that the experimental distributions observed over
a large sampling domain are representative, up to statistical fluctua-
tions, of the underlying model distributions, similarly to what happens
with i.i.d. random variables [6,5]. The only requirement is thus to as-
sume that the sampling window is large enough to observe the full
distribution ranges of diameters, orientations and intensity. Note that
randomizing the Poisson intensity converts the homogeneous Poisson
process representing the fracture centers into a doubly stochastic
Poisson process, also known as a Cox process.

Second, if the fracture diameters do not have an absolutely con-
tinuous distribution (e.g., if only a discrete set of fracture diameters are
possible), one has to replace the numerator of the integrand in Eq. (2) (g
(δ)dδ) by dG(δ), where G(δ) stands for the cumulative distribution
function (cdf) of the fracture diameters. Up to this formal modification,
all the equations and demonstrations presented hereafter remain valid.
Note that, under the abovementioned assumptions for the Poisson-disc
model, the trace length distribution is absolutely continuous and pos-
sesses a probability density function f that takes finite values except for
the discontinuity points of G, as per Eq. (2), even if the density g(δ)
takes infinite values for some specific values of δ or it is undefined (case
of a non-absolutely continuous diameter distribution).

Third, if the fracture diameter and fracture orientation are not in-
dependent, Eq. (2) is no longer valid and one has to use Eq. (1) instead.
One can therefore determine the diameter distribution of the fractures
with a given orientation α (density gα) by considering only the trace
lengths on the sampling plane P induced by the fractures with or-
ientation α (density fα

P( )), and repeat the procedure for different choices
of the fracture orientation on the 2-sphere S2. In practice, it is usual to
distinguish a few fracture sets comprising approximately parallel frac-
tures of the same type and age (for instance, fracture clusters whose
distribution of orientations has a small dispersion). Based on Eq. (1),
the formalism hereafter described can be applied to each fracture set
separately.

2.2. Inverse and forward modeling

An inverse relationship for Eq. (2) is well-known in the fields of
stereology and stochastic geometry [36,37,19,16]:
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This equation has been used by Tonon and Chen [41] to obtain the
explicit expressions of the fracture diameter distribution for several
commonly used trace length distributions (uniform, exponential,
gamma and power law). For other trace length distributions such as the
lognormal, the same authors propose a numerical approximation of Eq.
(3). Other numerical methods have been suggested by Kulatilake and
Wu [22], Song and Lee [40], Song [38], Song [39] and Zhu et al. [46],
among others, to obtain the probability density function g(δ) of the
fracture diameter distribution using the relationship between trace
length and fracture diameter distributions (Eqs. (1) and (2) or equiva-
lent stereological relationships). However, Eq. (3) involves the deriva-
tive of f(l)/l, the estimation of which lacks robustness in practice: a
small variation of f(l) may indeed produce a large variation of the de-
rivative of f(l)/l, thus a large variation of g(δ), making the problem of
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