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A B S T R A C T

Different physiological signals are of different origins and may describe different functions of the human
body. This paper studied respiration (RSP) signals alone to figure out its ability in detecting psychological
activity. A deep learning framework is proposed to extract and recognize emotional information of
respiration. An arousal-valence theory helps recognize emotions by mapping emotions into a two-
dimension space. The deep learning framework includes a sparse auto-encoder (SAE) to extract emotion-
related features, and two logistic regression with one for arousal classification and the other for valence
classification. For the development of this work an international database for emotion classification
known as Dataset for Emotion Analysis using Physiological signals (DEAP) is adopted for model
establishment. To further evaluate the proposed method on other people, after model establishment, we
used the affection database established by Augsburg University in Germany. The accuracies for valence
and arousal classification on DEAP are 73.06% and 80.78% respectively, and the mean accuracy on
Augsburg dataset is 80.22%. This study demonstrates the potential to use respiration collected from
wearable deices to recognize human emotions.

© 2017 Published by Elsevier B.V.

1. Introduction

With great advance of artificial intelligence, it is promising to
conduct affective computing with physiological signals. Many
physiological signals are detected based on wearable devices, such
as electrocardiogram (ECG), electroencephalography (EEG), elec-
tromyogram (EMG), blood volume pressure (BVP), galvanic skin
response (GSR), temperature (TEMP), respiration pattern (RSP),
photoplethysmogram (PPG). There is increasing evidence that
these signals contain information related to human emotions [1–
6]. Emotion recognition based on physiological signals is promising
because these signals are involuntary manifestation of human
body and people cannot control them intentionally. Moreover,
continuous emotion assessments can be obtained through
measurements of physiological signals.

Human emotions can be affected by many factors [7,8], and
different emotions usually have fuzzy boundaries. Recent studies
developed different kinds of emotion recognition models and
tested them on their own dataset. In 2001, Professor Picard applied
artificial intelligence to recognize human emotional states given

physiological signals [9]. They extracted statistical time and
frequency values and achieved 81% recognition accuracy on eight
emotional classes. After that, more complicated features have been
extracted. Duan et al. proposed differential entropy to represent
EEG feature related to emotional states and achieved average
accuracy of 81.17% [10]. Giakoumis et al. [11] introduced the
Legendre and Krawtchouk moments to extract biosignal features.
Yannakakis and Hallam used the approximate entropy feature [12]
and preference learning [13]. Lin et al. applied machine learning
algorithms to categorize EEG signals and obtained an average
classification accuracy of 82.29% for four emotions [14]. Wang et al.
systematically compared three kinds of EEG features (power
spectrum feature, wavelet feature and nonlinear dynamical
feature) for emotion classification [15].

Although different features have been tried to describe
emotion-related characteristics of physiological signals, manual
feature extraction inherits some primary limitations. First of all,
performance of hand-crafted feature largely depends on the signal
type and human experience. Poor domain knowledge may lead to
an inappropriate feature that cannot capture the characteristics of
certain signals. Second, there is no general guarantee that any
feature selection algorithms will end to the optimal feature set.
Third, the most manual features are statistical and can’t depict
signal details, which means a loss of information.
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Distinctively, deep learning can automatically derive features
from the raw signals, as opposed to manually pre-designed
statistical features. Deep learning allows automatically feature
selection and bypasses the computational cost of feature selection.
Recently deep learning methods have been tried to process
physiological signal like EEG and skin resistance, and achieved
comparable results in comparison with other conventional
methods [16–18]. In 2013, Martinez et al. introduced Convolutional
Neural Network (CNN) to establish physiological models of affect
[16]. To the best knowledge of the authors, this is the first attempt
to use deep learning for computational modeling of affect. Since
that, some studies on deep emotion recognition have been
published [19–21]. For example, Zheng trained a Deep Belief
Network (DBN) to classify two emotional categories (high and low
valence) from EEG data, and Jirayucharoensak implemented a
sparse auto-encoder whose input features are from 32-channel
EEG signals [24]. To detect sleep stage, Martin et al. compared the
manual features and a model combining DBN and hidden Markov
model (HMM) [25].

After choosing deep learning as the feature extraction method,
we move forward to talk about physiological signals. Different
physiological signals are of different origins and may describe
different functions of human body. For instance, the ECG and BVP
relate to the cardiovascular system, while the EMG describes
electrical activities of muscle. It is important to investigate the
dynamics of every signal in order to clearly figure out its feasibility
and limitation in assessing psychological activity. To this end, this
work investigates RSP signals alone.

Respiratory pattern contains rich information about emotional
states. Respiration velocity and depth usually varies with human
emotion. For example, deep and fast breathing shows excitement
that is accompanied by happy, angry or afraid emotion; shallow
and fast breathing shows tension; relaxed people often have deep
and slow breathing; shallow and slow breathing shows a calm or

negative state. When in calm states, people usually breathe about
20 times per minute while in excitement, people breathe 40 to 50
times per minute. From RSP data, we selected four segments
corresponding four kinds of emotions, as shown in Fig. 1.

As the RSP signal contains a wealth of emotional information,
and can be easily detected in wearable devices, therefore in this
paper, we focus on emotion recognition via respiration signals. To
help recognize emotions, we used the Russel’s Circumplex theory
of emotion [26]. Specifically, each emotion is seen as a linear
combination of two affective dimensions: arousal and valence.
Fig. 2 shows the general architecture of the deep learning
framework. We used a deep sparse auto-encoder (SAE) to extract
hidden features of RSP. Two logistic regression categorize the
features, with one for the arousal classification, and the other for
the valence classification.

To validate the efficacy of the SAE-based approach, an emotion
classification experiment was carried out using the DEAP database,
which is the largest, most comprehensive physiological signal-
emotion dataset publicly available to date. To further evaluate the
proposed method on other people, after model establishment, we
used the affection database established by Augsburg University in
Germany. The paper is organized as follows: Section 2 introduces
the arousal-valence theory, Section 3 describes the deep learning
framework that consists of sparse auto-encoder and logistic
regression, Experiment data, setting and results are presented in
Section 4, and discussion and conclusion are shown in Sections 5
and 6, respectively.

2. Arousal-valence emotion theory

In this study, we used the Russel’s Circumplex theory to help
emotion recognition. This theory indicates that emotional states
are distributed in a two-dimensional circular space, with arousal
and valence dimensions [26]. Arousal is the vertical axis and

Fig. 1. Four 20-s respiration signal segments under different emotional states: (a) high valence and high arousal, (b) low valence and high arousal, (c) low valence and low
arousal, (d) high valence and low arousal. The horizontal axis represents the sampling points while the vertical axis is the locally normalized magnitude of respiration signals.
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