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A B S T R A C T

High voltage transformers are essential parts of the electrical distribution grid. Severe failure of entire grids can
occur during earthquakes, when transformer bushings fail due to structural dynamic mismatch to the seismic
demands. Proper consideration of the fundamental frequency of vibration, which depends on the flexibility of
the cover plate of the transformer to which they are connected, is therefore crucial for determining the seismic
response of bushings. A simplified method is developed in this work for the evaluation of the “as-installed”
fundamental frequency of transformer bushings. Such bushings are modeled as cantilever beams with distributed
mass and elasticity, and an additional rotational spring is introduced at the base, to account for the flexibility of
the cover plate of the transformer. A simple yet efficient expression is derived for the as-installed frequency,
based on the Southwell-Dunkerley method. The solutions require the knowledge of the bending rigidity of the
bushing and the (out-of-plane) rotational stiffness of the cover plate. The evaluation of both these quantities is
presented. While analytical solutions for the (out-of-plane) rotational stiffness of circular plates are well known,
solutions for rectangular plates have not yet been addressed. A semi-empirical-numerical solution is suggested,
based on finite element models and analytical expressions derived by force-fitting the “circular plate solution” to
the numerical analyses. The results yielded by the proposed method are compared with experiments on real
bushings.

1. Introduction

Substation transformers, and bushings, are essential components of
power delivery systems. Although they are designed and manufactured
separately, their dynamic behavior cannot be analyzed independently.
During recent earthquakes, both in the United States and abroad,
bushings have sustained severe damage and failures, compromising the
functionality of the entire transformer-bushing system. This non-sa-
tisfactory seismic performance is an indication of potential flaws and
limitations in the current design concepts, and testing-qualification
procedures of transformer bushings, embodied in IEEE Standard 693-
2005 [1]. It is current practice to evaluate the seismic demands on
bushings based on the fixed base frequency, therefore ignoring the (out-
of-plane) flexibility of the cover plate of the transformer to which the
bushings are connected. However, depending on the properties of the
bushings, and on the out-of-plane stiffness of the cover plate, the “as-
installed” frequency that dominates bushing responses can be con-
siderably lower than the fixed base one, leading to seismic demands
that can be much higher than those considered for design. Experimental
studies [2–14] show that bushings with same construction appear to
have varying dynamic properties when installed on the roof of trans-
formers, dependent on the transformer cover construction. Some of the

experimental results are presented in Section 6 of this paper, and are
included in Table 3 for sake of comparisons.

The objective of the present paper is to propose a simplified method
for the evaluation of the “as-installed” frequency of transformer bush-
ings. For this purpose, the bushings are modeled as simple cantilever
beams with uniformly distributed mass (m) and elasticity (EI), as shown
in Fig. 1. The out-of-plane flexibility of the cover plate is accounted for
by introducing a rotational spring of stiffness k at the base. The fre-
quencies and modes of vibration of such systems, as also buckling loads
and modes, can be determined by analytical methods that are well-es-
tablished in the literature [15–17]. However, these require the solution
of an eigenvalue-eigenfunction problem, which may not be appealing
for design purposes. An approximate solution for the fundamental as-
installed frequency is derived herein, based on the Southwell-Dunkerley
method [18].

The exact and approximate solutions both require knowledge of the
bending rigidity of the bushing and out-of-plane rotational stiffness of
the cover plate. The former is generally difficult to evaluate based on
the variable geometry and material of the bushings [5,7]. The cover
plate is usually supported by a rectangular grid of beam-like stiffeners,
and obtaining its out-of-plane stiffness requires the solution of a
boundary value problem involving the interaction between the bushing
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and the cover plate. The bending rigidity of the bushings is herein
evaluated by inverting the expression for the fundamental frequency of
the fixed base cantilever, which is determined by experiments
[2,3,6,7,12,19]. Analytical solutions for the out-of-plane rotational
stiffness of the cover plate are available only for circular plates [16,20].
For square and rectangular plates, as in the case of a supported grid, the
same formulations require to express the solution in the form of an
infinite series. However, application of the boundary conditions,
needed to determine the coefficients of the series, leads to an ill-con-
ditioned algebraic problem. For this reason, finite element models
(FEM) in ABAQUS [21] are developed in this work, to solve the
boundary value problem and determine the rotational stiffness of the
cover plate. The accuracy of the finite element results is first tested
against the analytical solution for circular plates. The same con-
vergence criteria are then applied to the square and rectangular plates.
Analytical expressions, obtained by fitting the results of the finite ele-
ment analyses, are then derived for the evaluation of the rotational
stiffness of the cover plate. Finally, numerical applications are pre-
sented, where the simplified procedure is used and the results compared
to those obtained by experiments carried out at the Structural En-
gineering and Earthquake Simulation Laboratory (SEESL) at the Uni-
versity at Buffalo, USA.

2. Exact frequencies of vibration of beams with distributed mass
and elasticity

The frequencies and modes of vibration of beams with distributed
mass and elasticity on a rigid base can be determined by well-known
analytical methods, and are readily available in the literature [15,16].
The natural frequencies of flexible beams on a flexible base can also be
obtained by solving for the roots of the so-called frequency equation,
which depends on the boundary conditions of the beam. In the fol-
lowing subsections, expressions for the natural frequencies of vibration
are presented, for boundary conditions that concern the evaluation of
the dynamic response of transformer bushings.

2.1. Fixed base cantilever

Transformer bushings can be modeled as cantilever beams mounted
on a flexible base represented by the cover plate, Fig. 1(a). As a first
step, the fundamental frequency of the fixed base cantilever, Fig. 1(b),
is re-derived here for completeness [15,16]. The n frequencies of vi-
bration are derived by solving the following frequency equation:
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Eq. (1) can be solved numerically, and its roots βnH used in Eq. (2) to

obtain the natural frequencies of the system.
Herein we are mainly interested in the fundamental frequency,

which is obtained by substituting the smallest root of Eq. (1)
(β1H=1.8751) into Eq. (2) to get [15,16]:
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2.2. Flexible base cantilever

The flexible base mounted bushing is obtained by adding the flex-
ibility of the cover plate which is accounted for by considering a ro-
tational spring of stiffness k, as shown in Fig. 1(a). The frequency
equation is in this case:
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where
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Eq. (4) can be solved numerically, and its roots βnH used in Eq. (2)
to obtain the natural frequencies of the system. Again, the fundamental
frequency is obtained by substituting the smallest root of Eq. (4) into
Eq. (2) to get:
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The roots of Eq. (4), βnH, depend on the stiffness of the cover plate,
k, through the dimensionless parameter σ= EI∕kH. The influence of the
rotational spring at the base on the fundamental frequency is shown, in
Fig. 2, by plotting the ratio of the frequency of the cantilever mounted
on a semi-rigid base (represented by the spring of stiffness k) to that of
the fixed base cantilever, as a function of σ. A reduction in “as-installed”
frequency due to the flexible base is seen to be particularly important
when σ becomes large, obviously for a base characterized by small k, or
for stiff bushings characterized by large EI, small H, or both.

3. Approximation to the fundamental frequency using the
Southwell-Dunkerley method

A very simple approximation to the exact frequency ratio curve
plotted in Fig. 2 may be obtained using the Southwell-Dunkerley
method [18], as presented below. The method provides a lower limit
approximation while maintaining simplicity. The cantilever bushing on
flexible base is treated as the sum of a flexible beam (EI) on fixed base
and a rigid beam (EI=∞) on flexible base (k), both beams having the

m EI,H m EI,

k

(a) (b)
Fig. 1. Models used to describe the dynamic behavior of transformer bushings: (a) uni-
form flexible base cantilever, (b) uniform fixed base cantilever.

Fig. 2. Influence of the base rotational spring on the “as-installed” frequency of bushing.
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