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A B S T R A C T

The capture of interfacial instabilities during water injection simulations in oil reservoirs is a challenging topic,
which requires elaborate techniques, generally able to describe heterogeneities of reservoirs and phenomena
associated with the flow of immiscible fluids. This article deals with simulations of viscous fingers in two-phase
flows (water-oil) trough heterogeneous and anisotropic porous media, where both heterogeneity and anisotropy
are modeled by the three-parameter Kozeny–Carman generalized equation, which was included in a classical
model commonly used to simulate immiscible flows during waterflood operations. As main result, this paper
presents a sophisticated numerical simulator, which allowed us to perform predictions of high quality, proving
to be a suitable tool to describe physical aspects associated with flows in petroleum reservoirs. In fact, our
simulations show that the permeability anisotropy can influence the formation and development of immiscible
viscous fingering. For example, when water is injected through three different configurations, five-spot, line-
drive and inverted five-spot, the results of this study indicate that this anisotropy may impose a significant
degree of stabilization to the viscous fingering phenomenon, benefiting oil recoveries under water flooding
processes.

1. Introduction

Viscous fingers are products of an interfacial instability phenom-
enon that occurs in porous media, when a high viscosity fluid is
displaced by another fluid that has low viscosity. When the fluids are
immiscible, this phenomenon is referred to as the immiscible viscous
fingering. As a relevant example, we have the formation of viscous
fingering in oil reservoirs during waterflood operations, where part of
the invading water (bypassing the oil) prematurely addresses the
extraction wells (Chouke et al., 1959; Rachford, 1964; Peters and
Flock, 1981).

Theoretical and experimental studies have been conducted in order
to understand the formation and evolution of immiscible viscous
fingering, see Jerauld et al. (1984), Riaz and Techelepi (2006), and
Yadali Jamaloei et al. (2011), for example.

In oil reservoirs, viscous fingers are triggered primarily by natural
geologic heterogeneities, such as the heterogeneities of the perme-
ability field. In numerical simulations, often viscous fingers are
triggered using synthetic permeability fields, generated randomly from
a log-normal distribution with a specified variance (Christie, 1989).

Recently, Henderson et al. (2015) have been successful in using the
so-called three-parameter Kozeny–Carman generalized (TPKCG) equa-
tion to trigger viscous fingers in the simulation of two-phase displace-
ments through heterogeneous porous media. The TPKCG equation is a
mathematical model that was developed to allow the use of a Kozeny-
Carman type equation to a broad class of porous media with fractal
nature, generalizing various models previously reported in the litera-
ture, which commonly are employed to describe specific porous
materials, including oil reservoirs with fractal heterogeneities
(Henderson et al., 2010).

Here we investigate the influence of permeability anisotropy on the
formation of immiscible viscous fingering, where both heterogeneity
and anisotropy are modeled by the TPKCG equation. We consider two-
dimensional porous media with rectangular formats, and to observe the
effects of well locations on the geometric structure of immiscible
fingers, we study three water injection patterns: five-spot, line-drive
and inverted five-spot.

As a practical result, this work led us to a sophisticated numerical
simulator for two-phase flows in porous media, which proved to be a
suitable tool to describe physical aspects associated with the formation
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and development of immiscible viscous fingers in heterogeneous and
anisotropic porous media.

The remainder of this paper is organized as follows. In Section 2, we
describe the TPKCG equation. Section 3 is devoted to the presentation
of the model for immiscible fluids flow in heterogeneous and aniso-
tropic porous media. In Section 4, we report the results. In Section 5,
we present some discussions. The conclusions are summarized in
Section 6.

2. The generalized Kozeny-Carman equation

The permeability (k) is one of the most important properties of a
porous material, which characterizes the ease with which a fluid may be
made to flow through the medium.

Henderson et al. (2010) proposed the TPKCG equation, which was
used in the modeling of permeability fields. The description of a porous
material using the TPKCG equation necessarily considers the existence
of a functional relationship of the form

k f ϕ= ( ), (1)

where ϕ is the porosity of the material (the fraction of the bulk volume
of the porous medium occupied by voids). In Eq. (1), f summarizes the
mathematical model, such that f ϕ( )=0 if ϕ=0.

Throughout this section, let Mb be the called specific surface of
porous medium, i.e., the interstitial surface area of the pores per unit of
bulk volume of a representative sample of the solid matrix, and let τ
designate the tortuosity, which describes the ratio of flow-path length
to sample-path length.

The TPKCG equation models fractal structures, which are char-
acterized by the existence of fundamental properties between the
specific surface M( )b and the portion of the bulk volume occupied by
solid matrix ϕ(1 − ), and between the tortuosity τ( ) and the porosity
(ϕ). This model assumes that (Henderson et al., 2010):

(1) The reciprocal of the specific surface admits the fractal scale law
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where C M1/ b and D M1/ b are, respectively, the fractal coefficient and
the fractal exponent of M1/ b.

(2) The tortuosity is described by the fractal scale law

τ C ϕ= ,τ
D− τ (3)

where Cτ and Dτ are the fractal coefficient and fractal exponent of τ ,
respectively.

(3) The porous medium can be modeled as a bundle of n capillary
tubes non-necessarily of circular cross-sections, where the flow in
this bundle of hydraulic tubes is described by an extension of
Hagen–Poiseuille law
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In Eq. (4) q̂ is the fluid flow rate in volume per unit time, μ is
the viscosity of the fluid, PΔ is the applied pressure difference
across the length of the tubes, Rh and Lh denote, respectively, the
hydraulic radius and length of the mean hydraulic tube, and fv is a
shape factor of volume of the tubes.

(4) The hydraulic radius obeys the relation

R ϕ
M
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b (5)

As stated by Henderson et al. (2010), such conditions lead to the
TPKCG equation, which can be written in the following short form
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In Eq. (6), the three fractal parameters ξ, ζ and η depend on the
fractal coefficients and fractal exponents described in Eqs. (2) and (3).
The parameters ζ and η are dimensionless quantities, while the
parameter ξ has length dimension.

Nomenclature

Cτ fractal coefficient of τ (unitless)
C M1/ b fractal coefficient of 1/Mb (m)
D M1/ b fractal exponent of 1/Mb (unitless)
Dτ fractal exponent of τ (unitless)
f arbitrary function
fv shape factor of volume (unitless)
fw fractional flow of the water phase (unitless)
k permeability (m2)
k permeability tensor (m2)
kx permeability in x-direction (m2)
ky permeability in y-direction (m2)
kr0 relative permeability of the oil phase (unitless)
krw relative permeability of the water phase (unitless)
Lh length of the mean hydraulic tube (m)
M mobility ratio (unitless)
Mb specific surface in area per unit of bulk (1/m)
Pc capillary pressure (Pa)
Pcmax maximum capillary pressure (Pa)
Po pressure of the oil phase (Pa)
Pw pressure of the water phase (Pa)
q total source (or sink) term (1/s)
qw water source (or sink) term (1/s)
q̂ flow rate (m /s3 )
Q total flow rate (m /s2 )
Qw flow rate of water phase (m /s2 )
Rh hydraulic radius (m)

Sw water saturation (unitless)
Sw

(0) initial water saturation (unitless)
t time (s)
u total velocity (m/s)
uw velocity of the water phase (m/s)
ϵ real number (unitless)
ζ parameter of TPKCG equation (unitless)
ζx parameter of TPKCG equation in x-direction (unitless)
ζy parameter of TPKCG equation in y-direction (unitless)
η parameter of TPKCG equation (unitless)
ηx parameter of TPKCG equation in x-direction (unitless)
ηy parameter of TPKCG equation in y-direction (unitless)
λ total mobility (1/Pa s)
λo mobility of the oil phase (1/Pa s)
λw mobility of the water phase (1/Pa s)
μ viscosity (Pa s)
μo viscosity of the oil phase (Pa s)
μw viscosity of the water phase (Pa s)
ν unit vector normal to ∂Ω
ξ parameter of TPKCG equation (m)
ξx parameter of TPKCG equation in x-direction (m)
ξy parameter of TPKCG equation in y-direction (m)
τ tortuosity (unitless)
ϕ porosity (unitless)

PΔ pressure difference (Pa)
Ω two-dimensional domain
∂Ω boundary of Ω
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