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a b s t r a c t 

As a typical manifold learning method, elastic preserving projections (EPP) can well preserve the local 

geometry and the global information of the training set. However, EPP generally suffers from two issues: 

(1) the algorithm encounters the well known small sample size (SSS) problem; (2) the algorithm is based 

on the adjacent graph such that it is sensitive to the size of neighbors. To address these problems, we 

propose a novel method called exponential elastic preserving projections (EEPP), principally for facial 

expression recognition. By utilizing the properties of matrix exponential, EEPP is not only able to exploit 

the manifold structure of data, but also can get rid of the issues mentioned above. Experiments conducted 

on the synthesized data and several benchmark databases illustrate the effectiveness of our proposed 

algorithm. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

During the past couple of years, facial expression recogniton 

(FER) [1,2] has been extensively studied in the area of computer 

vision and pattern recognition due to its potential application in 

human-computer interaction and affective computing. A face im- 

age is usually represented as a data point in high-dimensional 

space. Often, such high-dimensional data lies close to a low- 

dimensional structure corresponding to a certain category to which 

the data belongs [3] . So dimensionality reduction (DR), which aims 

at exploring the low-dimensional subspace structure embedded in 

data, plays an important role in FER tasks. In many existing DR 

algorithms, principal components analysis (PCA) [4] and linear dis- 

criminant analysis (LDA) [5] are two classical linear DR methods. 

PCA attempts to project the data along an optimal direction by 

maximizing the variance matrix of data. Unlike PCA, LDA is a su- 

pervised method, which utilizes the label information and seeks 

to find a projection direction by maximizing the inter-class scat- 

ter and meanwhile minimizing the inner-class scatter. However, 

LDA usually suffers from the small sample size (SSS) problem. This 

stems from generalized eigen-problems with singular matrices. To 

overcome this limitation, many variants of LDA such as 2D-LDA 

[6] , LDA/GSVD [7] , LDA/QR [8] , LDA/FKT [9] , have been proposed 

in recent years. Moreover, to increase the degree of freedom and 

avoid the overfitting problem for 2D-LDA, Chang et al. [10] pro- 

∗ Corresponding author. 

E-mail address: moukyou@buaa.edu.cn (X. Mao). 

posed compound rank- k projection (CRP), which utilizes multiple 

projection models to enhance the discriminant ability. 

To our best knowledge, linear DR methods may fail to discover 

the underlying nonlinear structure, in which the high-dimensional 

image information in the real world lies. To remedy this defi- 

ciency, a large number of manifold learning algorithms have been 

proposed to discover the intrinsic nonlinear structure of the fa- 

cial images. The most well-known manifold learning algorithms in- 

clude locally linear embedding (LLE) [11] , isometric feature map- 

ping (ISOMAP) [12] and Laplacian eigenmaps (LE) [13] . LLE is 

an unsupervised method which focuses on local neighborhood of 

each data point and preserves the minimum linear reconstructing 

with neighborhood in the embedding space. ISOMAP determines 

the low-dimensional representations of original data by preserv- 

ing geodesic distances between pairs of data points. LE is designed 

to preserve proximity relations of neighbor points by utilizing an 

undirected weighted graph. Unfortunately, these manifold learn- 

ing methods usually suffer from the out-of-sample problem [14] . 

This is because they are defined only according to the training 

data, when new samples come, they cannot map them directly. 

To tackle this problem, He et al. proposed locality preserving pro- 

jection (LPP) [15] and neighborhood-preserving embedding (NPE) 

[16] . In 2005, Pang et al. proposed neighborhood preserving pro- 

jection (NPP) [17] . In order to reconstruct the data, Kokiopoulou 

and Saad proposed orthogonal neighborhood preserving projection 

(ONPP) [18] , which forces the projection matrix to be orthogonal 

by solving the ordinary eigenvalue problem. To make sure that 

all the basis functions obtained by LPP are orthogonal, Cai et al. 
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[19] also put forward orthogonal locality preserving projection 

(OLPP). The massive experiments [ 18 –20 ] have shown that forc- 

ing an orthogonal relationship between the projection directions 

is more effective for preserving the manifold structure of high- 

dimensional data. Furthermore, in order to improve the discrimi- 

nant power for classification tasks, lots of manifold-learning-based 

discriminant analysis algorithms [21–25] have been proposed. In 

2014, Chang et al. [26] integrated manifold learning with clustering 

and proposed Spectral Shrunk Clustering (SSC), which has obtained 

quite promising clustering performance. 

However, there exists a common problem with current mani- 

fold learning methods; that is, they only character the locality of 

samples such that they might not necessarily discover the most 

important manifold for pattern discrimination tasks. A reasonable 

approach should be one that integrates both nonlocal (global) and 

local structure into the objective functions of manifold learning. 

Yang et al. [27] proposed unsupervised discriminant projection 

(UDP). UDP introduces the concept of non-locality and can obtain 

the low-dimensional representation of data by maximizing the ra- 

tio of nonlocal scatter to local scatter. Zhang et al. [28] proposed 

complete global-local LDA (CGLDA) to incorporate three kinds of 

local information into LDA. In the literature [29] , the authors pro- 

posed elastic preserving projections (EPP) which considers both 

the local structure and the global information of data. Luo et al. 

[30] added the discriminant information and orthogonal constraint 

into EPP, and proposed discriminant orthogonal elastic preserving 

projections (DOEPP). Recently, low-rank representation (LRR) [31–

33] , which is claimed to capture the global structure of the data, 

has received considerable interest. By solving the nuclear norm 

minimization, in general, LRR aims to find the lowest-rank rep- 

resentation among all the candidates that represent all vectors as 

the linear combination of the bases in a dictionary. Based on LRR, 

Liu et al. [34] proposed Laplacian regularized LRR (LapLRR), which 

discovers both the global Euclidean and local manifold structure 

of data, and is expected to have more discriminant power than 

LRR. In [35] , a non-negative sparse hyper-Laplacian regularized LRR 

model (NSHLRR) was proposed. NSHLRR not only can represent the 

global low-dimensional structures, but also capture the local simi- 

larity information among data. 

From the view of manifold learning, EPP aims to capture the lo- 

cal manifold structure and the global geometrical properties. How- 

ever, in real world applications, EPP also has two main key is- 

sues. One is that the performance of EPP is sensitive to the size of 

neighbors. EPP constructs two graph models: the undirected neigh- 

borhood graph and the global graph. Usually, the most popular 

neighborhood graph construction manner is based on the K near- 

est neighbor criteria. Once the neighborhood graph is constructed, 

the edge weight is assigned by the heat kernel function. Unfortu- 

nately, such neighborhood graph needs to be artificially defined in 

advance, so it does not necessarily fit the intrinsic local structure 

of data. Still worse, the performance of EPP is seriously sensitive 

to the size of neighbors. The other one is the fact that it suffers 

from the small sample size problem (SSS). When the dimension 

of image sample is larger than the number of samples, the con- 

straint matrix of EPP will be singular. To deal with this problem, 

a traditional approach is to use PCA for preprocessing. However, a 

potential problem is that the PCA step may discard some useful 

information for classification task. 

Therefore, to alleviate the above issues, we propose a novel 

manifold learning algorithm called exponential elastic preserv- 

ing projections (EEPP), motivated by the previous works [36,37] . 

Through introducing the matrix exponential, EEPP is more robust 

to the variation of the neighborhood size K. Moreover, the positive 

definite property of matrix exponential can also make EEPP avoid 

the SSS problem and obtain more valuable information. 

The rest of this paper is organized as follows. We briefly review 

the LPP and EPP algorithm in Section 2 . In Section 3 , we introduce 

the proposed EEPP algorithm in detail. In Section 4 , the experi- 

ments on two well-known synthetic manifold data sets and three 

widely used facial expression databases are carried out to demon- 

strate the effectiveness of the proposed method. Finally, Section 

5 concludes the paper. 

2. Review of the related work 

Given a sample set X = { x 1 , x 2 , . . . , x N } ∈ R 

D ×N , the objective of 

dimensionality reduction is to find a transformation matrix W of 

size D ×d to map: y i = W 

T x i , y i ∈ R 

d×N , where d < D , such that y i 
is easier to be distinguished in the projective subspace. 

2.1. Locality preserving projections 

LPP [15] is an optimal linear approximation to LE. It only at- 

tempts to preserve the local structure of samples in the low- 

dimensional projective subspace. The local structure of data is 

measured by an adjacency graph G , constructed by K nearest 

neighbors. The corresponding similarity matrix S is defined by us- 

ing the heat kernel function as: 

S i j = 

{ 

exp 

(
−
∥∥x i − x j 

∥∥2 

2 
/ 2 t 2 

)
, if x j ∈ O ( K, x i ) 

0 , otherwise 
(1) 

where O ( K , x i ) denotes the set of K nearest neighbors of x i and t 

is a kernel. LPP defines the projected points in the form y i = W 

T x i . 

Therefore, its objective function can be obtained by solving the fol- 

lowing minimization problem: 

min W 

T X L X 

T W 

s . t . W 

T X D X 

T W = I . 
(2) 

where L = D - S is the Laplacian matrix. D is a diagonal matrix and 

its entries D ii = 

∑ 

j S ij , D ii measures the local density around x i . The 

objective function incurs a heavy penalty if two neighbour points 

are mapped far apart. Thus, minimizing the function is an attempt 

to make sure that if x i and x j are close, then their corresponding 

projections y i and y j are close, as well. Finally, the optimization 

problem can be converted to the smallest eigenvalue of the fol- 

lowing generalized eigen-problem: 

XL X 

T w = λXD X 

T w (3) 

Once the d eigenvectors are computed, the low-dimensional 

embedding results can be obtained by y i = W 

T x i , where W = 

[ w 1 , w 2 , . . . , w d ] . 

2.2. Elastic preserving projections 

Elastic preserving projections (EPP) [29] incorporates the advan- 

tage of both the local geometry and global information of data. The 

whole procedure of EPP can be decomposed into four steps: 

1 Local graph construction and selection of the weights : The K near- 

est neighbor method is adopted to construct the local graph. If 

x j is among the K nearest neighbors of x i , then put a direct edge 

from node i to node j . And the corresponding weights are de- 

fined as 

S i, j 

local 
= 

{ 

exp 

(
−
∥∥x i −x j 

∥∥2 

2 
/ 2 t 2 

)
, if nodes i and j are connected 

0 , otherwise 

2 Global graph construction and selection of the weights : To pre- 

serve the global information and reflect the relationship be- 

tween any two samples, the global weight matrix is defined as 

S i, j 

global 
= 

{
x i − x j 

2 
2 

exp 

(
−x i − x j 

2 
2 
/ 2 σ 2 

)
, i � = j 

0 , i = j 
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