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H I G H L I G H T S

• Development of a centralized occupancy-based Buildings-to-grid Model Predictive Control (MPC) framework.

• Simulation on building clusters and standard IEEE grid systems.

• Findings show 50–61% cost reduction for BtG integration.
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A B S T R A C T

Buildings-to-grid (BtG) integration simulations are becoming prevalent due to the development of smart
buildings and smart grid. Buildings are the major energy consumers of the total electricity production world-
wide. There is an urgent need to integrate buildings with smart grid operation to accommodate the needs of
flexible load controls due to the increasing of renewable energy resources. In the imminent future, smart
buildings can contribute to grid stability by changing their overall demand patterns in response to grid opera-
tions. Meanwhile, building thermal energy consumption is also maintained by building operators to satisfy
occupants’ thermal comforts. However, explicit large-scale demonstrations based on a simulation platform that
integrates building occupancy, building physics, and grid physics at community level have not been explored.
This study develops an occupancy behavior driven BtG optimization platform that can simulate, predict and
optimize indoor temperature and energy consumption of buildings, generator setpoint and deviation while
maintaining acceptable grid frequency. Authors have tested the framework on two standard power networks.
The results show that the integrated framework can provide potential cost savings up to 60% comparing with the
decoupled operation.

1. Introduction

In response to dramatic growth of power demand, use of renewable
energy, and critical risk of building power blackouts, smart buildings
and smart grid that can communicate with each other have more
benefits for building management and power operation. Recent reports
from the U.S. Department of Energy show that (1) buildings consume
74% of electricity produced by the grid in the U.S.; (2) buildings are
able to reduce their consumption by 20–38% using advanced sensors
and controls; and (3) 90% of the commercial buildings can be ag-
gregated to connect to the grid [1–3]. Hence, it is necessary to in-
vestigate and understand the coupling between buildings and grids for
optimizing the energy consumptions and the operation costs.

1.1. Building MPCs and research gaps

Model predictive control (MPC) is one real-time control algorithm
that connects buildings to grids, thereby establishing a computational
framework to co-optimize the decisions of building and grid operators.
Studies interoperating buildings and grids using MPC for demand re-
sponse are presented in recent literature overviews [4,5]. For com-
mercial buildings, a bi-level MPC optimization is designed to control
the voltage and current in a distribution grid while building zonal
models are integrated [6]. The study provides a framework comprising
mathematical models of commercial buildings and the distribution grid.
Commercial building MPC or model-based supervisory control can also
regulate the building power frequency by controlling the fan power
consumption, the chiller operation sequence, and the air-side

https://doi.org/10.1016/j.apenergy.2018.03.007
Received 27 November 2017; Received in revised form 16 February 2018; Accepted 9 March 2018

⁎ Corresponding author.
E-mail address: bing.dong@utsa.edu (B. Dong).

Applied Energy 219 (2018) 123–137

0306-2619/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03062619
https://www.elsevier.com/locate/apenergy
https://doi.org/10.1016/j.apenergy.2018.03.007
https://doi.org/10.1016/j.apenergy.2018.03.007
mailto:bing.dong@utsa.edu
https://doi.org/10.1016/j.apenergy.2018.03.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2018.03.007&domain=pdf


ventilation system [7,8]. Those studies treat buildings as fast demand
side resources to reduce frequency deviations in grid operations. Cus-
tomized designs of the model-based controllers can further provide
ancillary services to the grid [9,10]. One study optimizes the chiller to
respond fast to the demand response signal [9]. Another study in-
vestigates the ancillary service capacity under optimal HVAC usages
[10]. For residential buildings, grid-aware MPCs are carried out to re-
duce the costs of smart homes by using energy storage, appliance
scheduling, electric vehicles, and distributed generation units [11–15].
These studies usually focus microgrid or small-scale interactions be-
tween buildings and grids. The majority of the aforementioned research
shows significant energy savings given different building systems with
no account for larger scale simulations of building clusters.

One recent study [16] expands the current research scope by using a
detailed physics model of a building cluster for a smart grid optimiza-
tion. Although large-scale building aggregation is performed, the
models of electricity generation and renewable energy source are
oversimplified with no gird physics. Hence, the grid frequency and
power flow transmission cannot be regulated. Furthermore, how to
achieve the optimal control for hundreds of grid-aware commercial
buildings is not demonstrated, especially considering the significant
time-scale discrepancy between building demand change (minutes to
hours) and grid power supply (milliseconds to seconds). Therefore, an
explicit simulation of the building dynamics, grid dynamics, generator
capacity, and BtG operation cost from a large-scale control strategy is a
critical research question not fully addressed yet [17].

1.2. Missing of the occupant behavior

Another key component missing in the large scale BtG integration is
the building occupancy. Humans spend more than 90% of their time in
buildings, and the buildings themselves are designed to provide a
comfortable indoor environment for occupants [18]. The human-
building interactions, such as usage of lighting and air conditioning,
consume around one quarter to half of the total amount of commercial
building energy [19]. On the other hand, office workers arrive and
leave the workspaces regularly according to schedules. The stochastic
occupancy pattern can be detected easily by occupancy sensors, which
are commonly installed in today’s smart buildings [20]. Therefore, it is
a natural idea to utilize the occupancy information to reduce the energy

consumption caused by human-building interaction while maintaining
occupants’ comfort [21]. Typical occupancy schedules used to optimize
building operations are conservative on energy savings [22]. Larger
savings with stable comfort satisfactions can be further achieved
through learning and prediction of the office occupancy [20].

Current research has found a range of strategies to predict and
utilize the occupancy in single building control [23–25]. The optimi-
zation of air conditioning systems is demonstrated through building
MPCs using the hidden Markov chain to predict the occupant numbers
[26]. First order Markov chain (MC) is another popular method that can
provide online occupancy predictions. One study trains a MC in a
moving window for an occupancy driven MPC of commercial buildings
[27]. The occupied periods are found by aggregated predictions of the
occupancy models. The occupied periods’ setpoint temperature of the
air conditioning is reset from the high temperatures of unoccupied
periods. A similar example is shown by penalizing the discomfort index
during occupancy. Occupied periods are estimated using a MC that is
trained through Bayesian inference [28]. Savings are shown by pre-
heating, no conditioning at vacancies, and suppressing the peak de-
mands. A more detailed description of the Markov model will be in-
troduced in the following section of methodology. Other occupancy
models have also been extensively explored for building simulations,
such as random sampling [29], machine learning [30], data mining
[31] and agent-based models [32]. However, most studies focus on the
occupancy-buildings coupling are still ignoring the complete picture to
associate occupancy, buildings, and grids together [33–35]. How those
occupancy-based MPCs effect the aggregation of building demand and
influence the optimization of grid operation remains largely unknown.

1.3. Innovations of the study

Based on the aforementioned review, the study addresses the fol-
lowing research gaps for a large scale BtG integration: (1) lack of in-
vestigation of advanced control strategies for the integration of occu-
pancy, buildings and grid, and (2) lack of evaluation of the occupancy
impact on the individual thermal comfort and energy savings. Three
integration approaches are proposed and studied as: (1) a decoupled
buildings and grid optimization (DB&G), (2) a centralized Buildings-to-
Grid integration (BtG), and (3) a centralized occupancy-based BtG in-
tegration (OBtG). DB&G introduces on/off controls for buildings and

Nomenclature

Occupancy predictor

p transition probability
α distribution weight factor
β smooth factor
s occupancy state

Building system physics

C thermal capacity
R thermal resistance
Twall wall temperature
Tzone zone temperature
Q heat gain
Qsol solar heat
Qint internal heat
Qhvac HVAC cooling
η HVAC coefficient of performance
xb building temperature states
ub building control inputs
wb building disturbances

Grid system physics

θ bus voltage angle
D damping coefficient
M inertia coefficient
P power
Pm mechanical power input
Pe electricity demand load
Pmisc miscellaneous building load
Phvac building HVAC load
ω bus frequency
xg grid states
ug building load to grid
um controllable mechanical powers to grid
wg grid disturbances

BtG MPC

C building cost as the grid price
∊ slack relaxation based on occupancy prediction
a quadratic generator cost
b linear generator cost
f quadratic frequency cost
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