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a b s t r a c t

Flexibility requirements in prospective energy systems will increase to balance intermittent electricity
generation from renewable energies. One option to tackle this problem is electricity storage. Its demand
quantification often relies on optimization models for thermal and renewable dispatch and capacity
expansion. Within these tools, power plant modeling is typically based on simplified linear programming
merit order dispatch (LP) or mixed-integer unit-commitment with economic dispatch (MILP). While the
latter is able to capture techno-economic characteristics to a large extent (e.g. ramping or start-up costs)
and allows on/off decision of generator units, LP is a simplified method, but superior in computational
effort.

We present an assessment of how storage expansion is affected by the method of power plant
modeling and apply a cost minimizing optimization model, comparing LP with MILP. Moreover, we
evaluate the influence of wind and photovoltaic generation shares and vary the granularity of the power
plant mix within MILP.

The results show that LP underestimates storage demand, as it neglects technical restrictions which
affect operating costs, leading to an unrealistically flexible thermal power plant dispatch. Contrarily,
storage expansion is higher in MILP. The deviation between both approaches however becomes less
pronounced if the share of renewable generation increases.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

With growing shares of variable, renewable electricity (VRE)
generation in power systems, ensuring sufficient flexibility will
play a crucial role as the temporal and spatial mismatch between
demand and supply increases. Definitions of flexibility are broad
(see Refs. [1,2,8]), however, the term is commonly understood as
the ability to decouple electricity demand and supply to balance
variations in the net load [52] (which, in turn, is defined as the
electricity load minus the generation from VRE). It is likely that the
temporal variability of VRE generation will go along with an in-
crease in storage demand to prevent the aforementioned temporal
mismatch [3,4,13,22,43]. Moreover, higher shares of VRE generation
will require a more flexible operation of thermal power plants to
meet steeper net load ramps (see Ref. [52]).

1.1. Literature review

Model-based quantifications of future storage demand result in
rather diverse ranges (see for example Kondziella and Bruckner [5]
or Droste-Franke et al. [6]), depending on the spatial (I), temporal
(II), and technological resolution (III) as well as the underlying
modeling approach (e.g. for thermal power plant modeling in en-
ergy system models).

(I) Spatial resolution refers to the number of model-regions
within an observation area. It affects the distribution of genera-
tion capacities, power demand as well as the transmission grid
topology within the observation area. Required storage capacities
have been derived for different observation areas and spatial res-
olutions,1 e.g. by Brown et al. [7] for a small exemplary region (1),
for Texas in Denholm and Hand [8] (1), for California in Solomon
et al. [9] (12), for Germany in Babrowski et al. [10] (400), for the U.S.
Western Electricity Coordinating Council in Mileva et al. [11] (50),
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for Europe in Rasmussen et al. [12] (1) and Bussar et al. [13,22], and
for a worldwide analysis in Plessmann et al. [14] (1).

(II) The impact of temporal resolution (hourly vs. sub-hourly or
the appropriate choice of representative time periods) in optimi-
zation models has been analyzed with regard to ramp flexibility
and system costs [15], day-ahead utility scheduling through unit-
commitment [16,17], and for operation scheduling in energy sce-
narios with high shares of VRE generation [18,53].

(III) In this study, technological resolution is referred to the way
storage is considered in models. The literature ranges from repre-
sentations of single generic storage [19e21], to storage categories
(e.g. short-, mid-, long-term) [22,23], or to more detailed modeling
of actual technologies [24,25,43].

As shown, storage demand quantifications underlie various as-
pects and the understanding of such dependencies and quantifying
the amount of storage demand is therefore essential for dimen-
sioning future energy systems. Yet, the influence of assumptions in
thermal power plant modeling on storage demand has not been
considered so far.

Two main approaches of thermal power plant modeling in
optimization models can be found in the literature: Detailed
mixed-integer linear programming (MILP) approaches that opti-
mize the unit-commitment and economic dispatch of the thermal
power plant fleet and simplified linear programming (LP) where
the dispatch of thermal power plants follows solely the merit order.
Both approaches determine the optimal generation schedule,
minimizing the operating costs of power plant dispatch, subject to
device and operating constraints [26,28], sometimes denoted as
operating, dynamic or unit-commitment constraints. MILP however,
includes integer (or binary) decision variables, allowing on/off
consideration of single power plant units or groups, which again
enables greater technological detail (e.g. part load efficiencies,
ramping behavior, or minimum offline times).

The influence of increasing shares of VRE generation and their
effect in different modeling approaches for thermal power plants
has been analyzed for example by Brouwer et al. [27] or Abujarad
et al. [28]. The former provide a comprehensive overview of how
much VRE generation impacts reserve requirements, curtailments
of VRE generation, displacement of thermal generator, and resource
adequacy. Abujarad et al. [28] review different approaches for
generation scheduling, such as heuristics (e.g. priority lists),
mathematical methods (e.g. MILP or LP), or meta-heuristics (e.g.
genetic algorithms), providing a qualitative assessment of their
advantages and short-comings when considering increasing
penetration levels of VRE and storage systems. Abujarad et al. [28]
underscore the importance of storage as an additional flexibility
option, that can enable improved power system reliability or
smoothing of load patterns. As both [27] and [28] review the cur-
rent state of research, they cannot, by definition, provide a quan-
titative assessment how electricity storage demand is affected by
the modeling approach for thermal power plants.

Other studies specifically compare linear programming with
unit-commitment. Abrell et al. [29] for example, compare various
LP and MILP formulations for power plant start-ups and ramping,
assessing its influence with regard to power plant dispatch and
marginal prices of electricity generation. The latter is also research
focus of Langrene et al. [30], who investigate the role of techno-
logical detail (dynamic constraints) in a MILP approach on marginal
prices. Raichur et al. [31] analyze the influence of technological
detail (operating constraints) in power plant modeling with regard
to electricity generation associated emissions for two real power
systems (New York, Texas). The studymainly relies on scenario data
from the year 2010; it is therefore difficult to transfer their con-
clusions to power systems with higher shares of VRE generation.
Through the implementation of an integrated utility dispatch and

capacity expansion optimization tool, Palmintier [58] shows that
the importance of technological detail (operating constraints) in
power plant modeling increases with greater requirements for
flexibility owing to higher shares of VRE generation. Neglecting
such technical constraints within capacity expansion optimization
can lead to sub-optimal generation portfolios. Poncelt et al. [53]
compare the utility dispatch through LP (merit-order model) with
a MILP model, evaluating whether the influence of the temporal
resolution or the influence of the technical detail in power plant
modeling is more striking. The analysis is performed for different
observation years which, in turn, are characterized by different
shares of VRE generation up to 50%. Most recently, Stoll et al. [51]
provide a broad comparison of a MILP power plant approach with
LP for temporal resolutions of 1 h or 5 min and for differently sized
energy systems (Colorado-based test system versus Western
Interconnection model). Using PLEXOS [32], their analysis assesses
the impact on production cost, VRE curtailment, CO2 emissions, and
generator starts and ramps. Though comprehensive in terms of
evaluatedmodeling assumptions on various metrics, the study only
analyzes the dispatch of an exogenous capacity mix with a rela-
tively low share of VRE penetration (up to 30%). Moreover, the two
compared energy systems also show several differences in the
relative installed capacity of some technologies (e.g. coal fired po-
wer plants, gas turbines). By reason of the latter we argue that some
effects therefore cannot be solely attributed to the power plant
modeling approach.

1.2. Novelty and contribution

As energy system models become more diverse, their
complexity grows, imposing new challenges with regard to
computational effort and solution accuracy. As a result, the
following questions arise: To which extent do simplifications affect
the model's outcome? Under consideration of the model calcula-
tion times, which degree of detail is sufficient, without generating
large errors? To the best knowledge of the authors, the influence of
the modeling approach for thermal power plants on storage de-
mand (i.e. storage expansion) and utilization, especially in highly
renewable energy scenarios, has not yet been analyzed. We assume
that dynamic behaviors and associated costs of thermal power
plantsdsuch as start-ups, ramping and minimum down time-
sdmight have an effect on storage demand. Furthermore, we think
that a certain amount of resolution with regard to technical pa-
rameters of power plants and the number of represented units is
needed since neglecting technical restrictions and aggregating too
heavily might lead to a significant deviation from the optimal so-
lution. We therefore quantify the future storage expansion in
exemplary energy systems, emphasizing the influence of the
modeling approach for thermal power plants, the degree of ag-
gregation in a MILP unit-commitment clustering approach and the
influence of different VRE and photovoltaic (PV) generation shares.

2. Methodology and data

2.1. The REMix model

We use the linear bottom-up optimization model REMix
(Renewable EnergyMix) which minimizes the total system costs of
an energy system under perfect foresight. The system costs are
comprised of the annuities of the overnight investment costs of
capacity expansion as well the operating costs of the utility
dispatch. The latter includes fuel, emission certificates as well as
operations and maintenance costs (O&M). The model's decision
variables are capacity dispatch and expansion, which are optimized
for each model interval. A cross-sectoral approach enables the
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