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a  b  s  t  r  a  c  t

This paper  proposes  a new  frequency  domain  control  design  method  through  the use  of  a  modified
Nyquist  diagram  with  an  embedded  partial  pole-placement  capability.  The  proposed  Damped  Nyquist
Plot  (DNP)  method  evaluates  the  open  loop  transfer  function  (OLTF)  along  a line  of constant  damping  ratio
to provide  a  graphical  tool  to  design  power  system  stabilizers  (PSS).  The graphical  tool  shows  how  the
closed  loop  poles  move  around  this  damping  ratio  line  for different  choices  of PSS parameters,  all  of them
placing  a selected  pair  of  complex-conjugate  poles  at the  same  desired  point  in the  complex  plane.  New
formulas  are  developed  to determine  the  exact  PSS  parameters  that  promote  the  several  possibilities  of
partial  pole  placement  considering  the  parameter  ranges  used  in  tuning  practice.  These  formulas  can  also
be used  for  phase  compensation  of conventional  methods  of PSS  design,  such  as  GEP or Residue  Angle
Compensation.  Multiple  PSSs  can be  tuned  using  the DNP  method  sequentially.  The  proposed  method
is  applied  to  two  stabilization  examples,  the  first  of tutorial  nature  and the second  is the  large  actual
Brazilian  Interconnected  Power  System.

© 2018  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The small-signal stability analysis of power systems is carried
out through linear techniques [1,2] and the damping control of
power system oscillations is its most important objective. Such
damping may  be effectively improved using PSSs [3,4] designed
by linear control system techniques. The final design considers the
analysis of numerous operating points and the verification through
non-linear time-domain simulations and field tests. Modal analy-
sis tools were developed from many sources to determine the best
points in the system for the installation of stabilizers [5,6] and also
to help designing them [1,2,7–17]. A good overview on the indus-
try practice is given in [18]. Pole placement techniques have been
proposed in the literature [19–23], but none of them are based on
a graphical analysis of the closed loop poles for selection of PSS
parameters, such as the proposed method.

This paper describes a new stabilizer tuning technique based
on the use of a modified Nyquist diagram, called here Damped
Nyquist Plot (DNP). The stabilizer parameters are calculated using
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the new formulas developed in this paper, which can also be used
for phase compensation of conventional methods, such as GEP and
Residue Angle Compensation [2], or any other method that requires
calculation of parameters for phase compensation blocks. GEP is
an acronym for “Generator-Exciter-Power system” because it is
applied to a transfer function that involves these elements [1,2].
The proposed DNP method, which is not limited to power system
applications, allows the placement of a complex-conjugate pair of
poles at a desired location of the left-half of the complex plane
(s-plane). The method also provides graphical information on the
movements of the other poles that are affected by the PSS being
designed that helps selecting the best PSS parameters.

The proposed DNP method presents some advantages compared
to other methods from literature. For example, the classical GEP
(ideal phase curve method) or synchronizing and damping torque
methods [2,4,7,10] are based on adjusting the phase compensation
for having a pure damping behavior of the PSS. However, this phase
compensation usually reduces the closed loop pole frequency, even
when it is exactly compensated at the open-loop pole frequency.
Other negative characteristics of these methods are that they focus
on the local mode, several dominant poles are not well tuned, the
gains required for a suitable damping in the frequency range is not
known and the control modes are not even treated.
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In the same way, for the Residue Angle Compensation method
[2,6], which can also be called Departure Angle Compensation,
because it is based on the compensation of the initial phase of the
branch of root locus [6], the compensation is usually excessive too
and the required gain for stabilization is also unknown.

Note that the previous methods indirectly pursue the final
objective of shifting the poles to the left in an almost horizontal
way on the s-plane. The proposed DNP is the only one that does it
directly. It performs a precise pole placement and provides a graph-
ical method to have a good overview of the impact of each PSS
design on the whole set of dominant poles, including electrome-
chanical and control modes that move around the desired damping
ratio line.

Multiple stabilizers can be tuned by the sequential application
of the DNP design method where the PSS dynamic interactions
can be verified. Such procedure is useful when implementing the
retuning in the field. During the field implementation, the stabiliz-
ing loop parameters can be updated to solve or mitigate problems
such as adverse transients, excessive control noise and higher fre-
quency instabilities, which cannot be fully anticipated from the
computational simulations due to modeling errors and unmod-
eled dynamics. This sequential procedure allows validating the
impact of each PSS retuning in field that can always be reviewed
and updated if necessary at each step. This is an advantage of
the proposed DNP method compared to methods of simultaneous
coordinated design [11,13,15–17]. Any required changes in tuning
would modify completely the simultaneous PSS designs and the
new set of designs may  present the same problems in field.

The proposed DNP method allows the analysis of multiple sce-
narios as in Refs. [12,15,16] using other design methods. Such as
any other PSS design based on modal analysis, or even for the PSS
design in field, the PSS parameters are tuned for some operating
condition and, after that, the PSS performance is verified for many
other conditions. If an inadequate behavior is found, the tuning is
reviewed to attend the performance requirements for the operat-
ing point with the problem. Even when the whole set of scenarios
are simultaneously considered, the most critical one that will end
up defining the final tuning.

Therefore, the proposed DNP method can be applied to some
expected critical operating point, such as peak load scenario, to
obtain a first attempt of PSS design. Several other expected sce-
narios can then be evaluated with different loadings, dispatches,
network topologies and contingencies. This retuning can be based
on the first design, increasing for example the gain value or
changing time constants from compensation block, based on the
graphical inspection of the DNP, or a new design can be made, based
on the critical operating point, where the whole set of parameters
can change. This procedure may  be repeated until the oscillation
damping is adequate for all the scenarios.

The verification of the PSS performance can be done closing the
PSS loop and calculating the resulting closed loop poles or, even
before closing the PSS loop, using multiple compensated DNPs, one
for each scenario, all of them with the same PSS in analysis. When
using multiple compensated DNPs, the PSS design can be reviewed
based on the graphical visualization. Results on the use of multiple
compensated DNPs are presented.

Besides the advantages of the proposed method compared to
other approaches, the DNP method is a novel alternative where
the main characteristic is to leave to the analyst the final decision
on the selection of the multiple PSS parameters, providing graph-
ical information for helping in this task and leaving the burden of
the PSS parameter calculation to the computational program when
different parameter combinations are evaluated.

The DNP method has been implemented in the small signal sta-
bility software PacDyn used by the Brazilian utilities, operator and
planning agencies [24], which was used to produce all the results of

this paper. The remainder of the paper is organized as follows. Sec-
tion 2 reviews the small-signal stability analysis; Section 3 revisits
the conventional Nyquist criterion applied to the design of feedback
controllers; Section 4 introduces the DNP design method with the
embedded pole placement capability; Section 5 develops analytical
formulas for phase compensation; Section 6 lists guidelines for the
productive use of the DNP; Section 7 presents results on the appli-
cation of the DNP to two  test systems, while the main conclusions
are summarized in Section 8.

2. Small-signal stability analysis

The small signal stability model obtained by the linearization of
the power system dynamic equations around an operating point
has the form of Differential and Algebraic Equations (DAE) [1,25]:

T� ẋ = J�x  + b�u

�y  = c�x  + d�u
(1)

where the symbol � denotes incremental variable changes around
their initial values for a given operating point, x is the vector of
system variables, u is the input variable and y is the output variable,
which are defined respectively by vectors b and c. J is the Jacobian
matrix and d is the direct term. T is usually a diagonal matrix whose
elements are either ones or zeros that are used to distinguish the
differential from the algebraic equations. The small-signal stability
analysis is based on the calculation of the generalized eigenvalues
of the pencil (J,T), which are the poles of the system [1,25]. The
damping ratio � of a pole �c + j�c is defined in (2), being a damping
measure of the modal component associated to that pole [26–28].
For positive frequencies, (2) defines in the s-plane a straight line of
constant damping ratio starting at the origin, named �-line. For a
given �, from 10% to 15%, the pole is well-damped when on the left
of the �-line and poorly damped, when it is quite on the right.

� = −�c√
�c2 + ωc2

, �c = k|ωc |, where k = −�√
1 − �2

(2)

Classical methods of control theory are based on transfer func-
tions [26–28]. The transfer function G(s) is given in (3), obtained by
applying the Laplace transform to the DAE (1).

G(s) = �Y

�U
= c(sT − J)−1b + d (3)

where �U  and �Y  are the Laplace transforms of �u  and �y.
A system showing unstable or poorly damped oscillations may

be damped through the feedback of a stabilizer H(s) at a control
loop described by the transfer function G(s), as shown in Fig. 1. An
example of a power system stabilizer (PSS) derived from genera-
tor rotor speed ωger is also presented in Fig. 1. This PSS is usually
applied to the voltage regulator with positive sign at the summa-
tion block of the voltage reference Vref [1,2], therefore G(s) is equal
to −ωger/Vref to consider this positive feedback.

The open loop transfer function (OLTF) F(s) and the closed loop
transfer function (CLTF) T(s) are defined in (4) [26–28].

F(s)=G(s)H(s), T(s)= G(s)
1 + G(s)H(s)

(4)

3. Conventional Nyquist design

The proposed method is an extension and improvement of the
conventional Nyquist design which is reviewed in this section. The
design based on the conventional Nyquist Plot (NP) is well-known
and used in different areas of control engineering [26–28]. Its main
objective is to assess the stability of a system with feedback based
on the open loop frequency response. The NP for a transfer function
G(s) is the plotting of G(jω) in the complex plane (G(s)-plane) while
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