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Abstract: Whereas conventional power systems heavily rely on bulk generation by synchronous
machines, future power systems will be comprised of distributed generation based on renewable
sources interfaced by power electronics. A direct consequence of retiring synchronous generators
is the loss of rotational inertia, which thus far was the dominant time constant in a power system,
as well as the loss of the generator controls, which are the main source of actuation of the power
grid. Prompted by these paradigm shifts, we study the dynamic behavior of a nonlinear and
first-principle low-inertia power system model including detailed power converter models and
their interactions with the power grid. In this paper, we focus particularly on the admissible
steady-state behavior of such a low-inertia power grid and derive necessary and sufficient control
specifications for power converters.
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1. INTRODUCTION

The electric power system is currently undergoing a major
transition towards integration of large shares of distributed
generation connected by power electronic converters. To-
day power systems operation is based on bulk generation
by synchronous machines and heavily relies on their ro-
tational inertia for robustness. In contrast, future power
systems will be based on renewable sources, distributed
generation, and power electronics.

A direct consequence of retiring synchronous generators
is the loss of rotational inertia, which thus far was the
main reason for the grid’s stability and robustness to
disturbances. This results in larger, and more frequent,
frequency deviations and jeopardizes the stability of the
power grid (Tielens and Hertem, 2016; Winter et al.,
2015). At the same time, analysis of such phenomena is
a challenging problem because the power system physics
are highly nonlinear, large-scale, and contain dynamics
on multiple time scales from mechanical and electrical
domains. As a result, analysis and control of conventional
power system are typically based on reduced order models
of various degrees of fidelity (Sauer and Pai, 1998).

A widely accepted reduced model of conventional power
systems is a structure-preserving multi-machine model,
where each generator model is reduced to the swing
equation describing the interaction between the generator
rotor and the grid, which is itself modeled at quasi-
steady-state via the nonlinear algebraic power balance
equations. While this prototypical model has proved itself
useful (Sauer and Pai, 1998) its validity for conventional
power systems has always been a subject of debate; see
(Caliskan and Tabuada, 2015; Venezian and Weiss, 2016)
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for recent discussions. Because the derivation of this model
crucially relies on time-scale separations induced by the
rotational inertia of the generators its validity for low-
inertia power systems is highly questionable. For instance,
if power electronics are modeled as a constant power source
and all generators are removed only algebraic equations
remain. Moreover, it is not clear which dynamics of power
electronics devices need to be included, or how the AC
signals which connect the power electronics to the grid
enter into the swing equation.

One approach to mitigate the loss of rotational inertia is
to use power electronic devices to provide virtual inertia.
These control schemes typically measure AC signals which
are not present in the swing equation (Zhong and Weiss,
2011; D’Arco and Suul, 2013; Sinha et al., 2015). As a
first step towards overcoming these limitations, we pro-
pose a first-principles model of a power system containing
synchronous machines, DC/AC inverters, as well as trans-
mission line and voltage bus dynamics. The models of the
generator and the network are based on the detailed port-
Hamiltonian power system model proposed in Fiaz et al.
(2013) and combined with an averaged DC/AC inverter
model proposed by Jouini et al. (2016). In contrast to
typical inverter models, we explicitly consider the dynam-
ics of the DC-link capacitor, which is the dominant time
constant of the DC/AC inverter dynamics.

We seek answers to similar questions as in our previous
works on conventional power systems (Arghir et al., 2016;
Groß et al., 2016): under what conditions does the system
admit a steady-state in which all three-phase AC signals
are balanced, sinusoidal, and of the same synchronous
frequency. We provide an algebraic characterization that
specifies the state variables, control inputs, and a syn-
chronous frequency such that the dynamics of the power
system coincide with the desired steady-state dynamics.

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 11222

On the steady-state behavior of low-inertia

power systems ⋆

Dominic Groß ∗ Florian Dörfler ∗

∗ Automatic Control Laboratory at the Swiss Federal Institute of
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Based on this, the electrical torque τe,k(λk, θk) : R
2 ×

R → R can be expressed as follows:

τe,k(λk, θk) =
1

2
λ⊤
k (L−1

θ,k�
⊤ + �L−1

θ,k)λk. (4)

Moreover, the stator current is,k and excitation current

if,k are given by ik = (is,k, if,k) = L−1
θ,kλk ∈ R3.

Interconnection Graph of the Transmission Network:

The AC voltage buses are interconnected by a transmission
network. The topology of the transmission network is
described by the (oriented) incidence matrix E of its
associated graph (see e.g. Fiaz et al. (2013)). In the
remainder, we consider the following partition of the
incidence matrix E ∈ {−1, 1, 0}2nv×2nt :

E = E ⊗ I2 =







Eq,1
...

Eq,nv






= [ET,1 . . . ET,nt ] . (5)

AC Voltage Bus Dynamics:

The dynamics of the AC voltage bus connected to the
generator with index k ∈ Vg are given by

q̇k = −GkC
−1
k qk − [I2 02×1]L−1

θ,kλk − Eq,kL−1
T λT , (6)

with bus capacitance Ck = I2ck, ck ∈ R>0, and bus con-
ductance Gk = I2gk, gk ∈ R>0. The flux of each transmis-
sion line k ∈ T is denoted by λT,k = (λT,α,k, λT,β,k) ∈ R2

and LT,k = I2lT,k, lT,k ∈ R>0 denotes its inductance. For
convenience of notation we define λT = (λT,1, . . . , λT,nt

) ∈
R2nt and LT = diag(LT,1, . . . , LT,nt

). The dynamics of the
AC voltage bus of an inverter with index k ∈ VI are given
by

q̇k = −GkC
−1
k qk − L−1

I,kλI,k − Eq,kL−1
T λT . (7)

The dynamics of the load buses k ∈ Vl are given by

q̇k = −Gq,kC
−1
k qk − Eq,kL−1

T λT . (8)

The conductance Gq,k = I2gk(�qk�) is used to model static
resistive and more general nonlinear loads and is defined
by a smooth function gk(s) : R≥0 → R>0.

Transmission Line Dynamics:

The dynamics of the transmission lines are given by

λ̇T,k = −RT,kL
−1
T,kλT,k + E⊤

T,kC
−1q, ∀k ∈ T (9)

where RT,k = I2rT,k, rT,k ∈ R>0, is the line resistance
of the k-th transmission line, C = diag(C1, . . . , Cnv

) is
the capacitance matrix of the voltage buses, and q =
(q1, . . . , qnv

) ∈ R2nv is the vector of voltage bus charges.

State Space Representation:

With the vectors θ = (θ1, . . . , θng
), p = (p1, . . . , png

),
λ = (λ1, . . . , λng

), qI = (qI,1, . . . , qI,ni
), and λI =

(λI,1, . . . , λI,ni
), the states of the overall power sys-

tem model are given by x = (θ, p, λ, qI , λI , q, λT ) ∈
Rnx , nx = 5ng + 3ni + 2nv + 2nt. Using the vectors
τm = (τm,1, . . . , τm,ng

), vf = (vf,1, . . . , vf,ng
), idc =

(idc,1, . . . , idc,ni
) and m = (m1, . . . ,mni

), the inputs are
given by u = (τm, vf , idc,m) ∈ Rnu , nu = 2ng + 3ni.

Furthermore, we define the rotor speeds ω = M−1p
and rotor field winding currents if = (if,1, . . . , if,ng

).
Finally, we let τe(λ, θ) = (τe,1, . . . , τe,ng

), isw(λI ,m) =
(isw,1, . . . , isw,ni

), and vsw(qI ,m) = (vsw,1, . . . , vsw,ni
).

To simplify the notation, we define the matrices If =
Ing

⊗ (0, 0, 1), as well as I⊤
g = [Is 03ng×2nl+2ni

], I⊤
I =

[02ni×2ng
I2ni

02ni×2nl
], and Is = Ing

⊗ [I2 02×1]
⊤. The

entire power system dynamics described by equations (3)
to (9) can be compactly rewritten as ẋ = f(x, u) with

ẋ =























M−1p

−DM−1p− τe(λ, θ) + τm

−RL−1
θ λ+ I⊤

g C−1q + Ifvf
−GIC

−1
I qI + isw(λI ,m) + idc

−RIL
−1
I λI + I⊤

I C−1q − vsw(qI ,m)

−GqC
−1q − IgL−1

θ λ− IIL−1
I λI − EL−1

T λT

−RTL
−1
T λT + E⊤C−1q























, (10)

where the matrices M , D, Gq, R, RT , GI , Lθ, LT , LI ,
C, and CI collect the corresponding matrices of the nodes
(e.g., M = diag(M1, . . . ,Mng

)).

We will predominantly work with the port-Hamiltonian
variables x = (θ, p, λ, λI , qI , q, λT ). For the sake of nota-
tional simplicity and engineering intuition we will some-
times also employ the associated co-energy variables y =
(τe, ω, i, iI , vI , v, iT ), where iI = L−1

I λI the vector of in-

verter output filter currents, vI = C−1
I qI is the vector of

DC voltages, ω = M−1p denotes the vector of rotational
frequencies, i = L−1

θ λ is the vector of stator and rotor
currents, v = C−1q is the vector of AC voltages, and
iT = L−1

T λT is the vector of transmission line currents.
The co-energy variables are depicted in Figure 1.

2.3 Desired Steady-State Behavior

We formulate the following dynamics which describe op-
eration of the power system at a synchronous frequency
w ∈ R. The desired steady-state behavior (12) specifies

vI

idc

m

iI

v

LI

τm

θ, ω

vf

v

if

τe

is

Lθ
v

iTLT

CG GqC v

CI

RTiI

M

rf

rs rsGI

RI

Fig. 1. Annotated diagrams of the main components of the power system: DC/AC inverter, synchronous machine, and
a transmission line connecting an inverter bus and a load bus.
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This analysis constructively leads to necessary conditions
that any controller for the power system has to satisfy in
steady-state. Specifically, we show that the set of states
and control inputs on which the dynamics coincide is
control-invariant if and only if the DC current supplied
to the inverter as well as all generator inputs are con-
stant, and the inverter switching block operates at the
synchronous frequency. Several heuristic inverter control
strategies (“heuristic” in the sense that they are not con-
structed from a priori specifications), such as droop control
(Dörfler et al., 2016), virtual oscillator control (Sinha et al.,
2015), synchronverters (Zhong and Weiss, 2011), genera-
tor emulation (D’Arco and Suul, 2013), matching control
(Jouini et al., 2016), and grid-following control (Tabesh
and Iravani, 2009), implicitly satisfy these specifications
in steady-state. Moreover, the steady-state specifications
for the generators justify assumptions used in the sta-
bility analysis of multi-machine networks (Caliskan and
Tabuada, 2014).

2. NOTATION AND PROBLEM SETUP

2.1 Notation

We use R and N, to denote the set of real numbers and
integers, and e.g. R>0 to denote the set of positive real
numbers. For column vectors x ∈ Rn, y ∈ Rm we use
(x, y) = [x⊤ y⊤]⊤ ∈ Rn+m to denote a stacked vector,
and for vectors or matrices x, y we use diag(x, y) =

[

x 0
0 y

]

.
Furthermore, In denotes the identity matrix of dimension

n, ⊗ denotes the Kronecker product, and �x� =
√
x⊤x

denotes the Euclidean norm. Matrices of zeros and ones of
dimension n×m are denoted by On×m and 1n×m, and 1n

denotes a column vector of ones of length n.

2.2 Dynamical Model of a Power Network

The power system model used in this work consists of ng

generators with index set G = {1, . . . , ng}, ni DC/AC
inverters with index set I = {ng+1, . . . , ng+ni}, nv voltage
buses with index set V = {1, . . . , nv}, and nt transmission
lines with index set T = {1, . . . , nt}. The AC voltage buses
are partitioned into generator buses Vg = {1, . . . , ng}, ni

inverter buses Vi = {ng+1, . . . , ng+ni}, and nl load buses
Vl = {ng +ni+1, . . . , ng +ni+nl}, i.e. nv = ng +ni+nl.
The components of the power system as well as the main
signals and parameters are depicted in Figure 1.

The model used in this manuscript combines a DC/AC
inverter model proposed by Jouini et al. (2016) with a
variant of the port-Hamiltonian power system model by
Fiaz et al. (2013) used in Arghir et al. (2016). The reader
is referred to these references for detailed derivations
and discussions of the models. Based on the following
assumption all three-phase AC signals are represented in
(α, β) coordinates.

Assumption 1. All three-phase AC quantities are assumed
to be balanced. Moreover, we assume that all three-
phase electrical components (resistance, inductance, ca-
pacitance) have identical values for each phase.

Inverter Dynamics:

We consider a three-phase DC/AC inverter consisting of

a DC-link capacitor, a switching block that modulates
the DC-link capacitor voltage into an AC voltage, and an
output filter. For the time scale of interest, we assume
that the switching frequency is high enough and that the
switching harmonics are suppressed by the output filter.
By averaging the behavior of the switching block over
one switching period, an averaged model of the inverter
is obtained (Tabesh and Iravani, 2009; Jouini et al., 2016).
The dynamics of the k-th inverter, with k ∈ I, is given by:

q̇I,k = −GI,kC
−1
I,kqI,k + isw,k(λI,k,mk) + idc,k, (1a)

λ̇I,k = −RI,kL
−1
I,kλI,k + C−1

k qk − vsw,k(qI,k,mk), (1b)

with DC-link capacitor charge qI,k ∈ R≥0, output filter
flux λI,k = (λI,α,k, λI,β,k) ∈ R2. The AC-side capacitor,
with charge qk = (qα,k, qβ,k) ∈ R

2, interconnects the
inverter to the grid and will be described later in the model
of the AC voltage bus dynamics. The control inputs of the
inverter are the modulation signal mk ∈ R

2, which has to
satisfy �mk� ≤ 1, and the current idc,k supplied to the
DC-link capacitor. In other words, we assume that idc,k
is supplied by a controllable source, e.g. a boost converter
connected to photovoltaics and/or a battery.

The averaged output voltage vsw,k(qI,k,mk) and switching
current isw,k(λI,k,mk) are given by:

isw,k(λI,k,mk) =
1
2λ

⊤
I,kL

−1
I,kmk, (2a)

vsw,k(qI,k,mk) =
1
2C

−1
I,kqI,kmk (2b)

The DC capacitance and conductance are denoted by
CI,k ∈ R>0 and GI,k ∈ R>0 and Li,k = I2lI,k, lI,k ∈ R>0

and RI,k = I2rI,k, rI,k ∈ R>0 denote the inductance and
resistance of the output filter.

Synchronous Generator Dynamics:

A generator with index k ∈ G is modeled by

θ̇k = Mk
−1pk (3a)

ṗk = −DkMk
−1pk − τe,k(λk, θk) + τm,k (3b)

λ̇k = −RkL−1
θ,kλk +

[

C−1
k qk
vf,k

]

, (3c)

where λk = (λs,k, λf,k) ∈ R3 represents the stator flux
linkage λs,k = (λα,k, λβ,k) ∈ R2 and rotor flux linkage
λf,k ∈ R, pk ∈ R is the momentum of the rotor, and
θk ∈ R its angular displacement. The generator is actuated
by the voltage vf,k ∈ R across the excitation winding
of the generator and the mechanical torque τm,k ∈ R

applied to the rotor. The electrical torque acting on the
rotor is denoted by τe,k(λk, θk) = ∂

∂θk
(12λ

⊤
k L−1

θ,kλk). The

inertia and damping of the rotor are given by Mk ∈
R>0 and Dk ∈ R>0, and the windings have resistance
Rk = diag(Rs,k, rf,k) with Rs,k = I2rs,k, rs,k ∈ R>0,
and rf,k ∈ R>0. The inductance matrix Lθ,k : R → R3×3

is a function of the angle θk and defined based on the
stator inductance Ls,k = I2ls,k ∈ R

2×2
>0 , mutual inductance

Lm,k = (lm,k, 0) ∈ R2
>0, and rotor inductance lr,k ∈ R>0:

Lθ,k =

[

Ls,k RθkLm,k

L⊤
m,kR⊤

θk
lr,k

]

, Rθk =

[

cos(θk) − sin(θk)
sin(θk) cos(θk)

]

.

For notational convenience, we introduce skew symmetric
matrices j ∈ R2×2 and � ∈ R3×3:

j =

[

0 −1
1 0

]

, � =

[

j 02×1

01×2 0

]

.
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