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Abstract: Whereas conventional power systems heavily rely on bulk generation by synchronous
machines, future power systems will be comprised of distributed generation based on renewable
sources interfaced by power electronics. A direct consequence of retiring synchronous generators
is the loss of rotational inertia, which thus far was the dominant time constant in a power system,
as well as the loss of the generator controls, which are the main source of actuation of the power
grid. Prompted by these paradigm shifts, we study the dynamic behavior of a nonlinear and
first-principle low-inertia power system model including detailed power converter models and
their interactions with the power grid. In this paper, we focus particularly on the admissible
steady-state behavior of such a low-inertia power grid and derive necessary and sufficient control

specifications for power converters.
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1. INTRODUCTION

The electric power system is currently undergoing a major
transition towards integration of large shares of distributed
generation connected by power electronic converters. To-
day power systems operation is based on bulk generation
by synchronous machines and heavily relies on their ro-
tational inertia for robustness. In contrast, future power
systems will be based on renewable sources, distributed
generation, and power electronics.

A direct consequence of retiring synchronous generators
is the loss of rotational inertia, which thus far was the
main reason for the grid’s stability and robustness to
disturbances. This results in larger, and more frequent,
frequency deviations and jeopardizes the stability of the
power grid (Tielens and Hertem, 2016; Winter et al.,
2015). At the same time, analysis of such phenomena is
a challenging problem because the power system physics
are highly nonlinear, large-scale, and contain dynamics
on multiple time scales from mechanical and electrical
domains. As a result, analysis and control of conventional
power system are typically based on reduced order models
of various degrees of fidelity (Sauer and Pai, 1998).

A widely accepted reduced model of conventional power
systems is a structure-preserving multi-machine model,
where each generator model is reduced to the swing
equation describing the interaction between the generator
rotor and the grid, which is itself modeled at quasi-
steady-state via the nonlinear algebraic power balance
equations. While this prototypical model has proved itself
useful (Sauer and Pai, 1998) its validity for conventional
power systems has always been a subject of debate; see
(Caliskan and Tabuada, 2015; Venezian and Weiss, 2016)
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for recent discussions. Because the derivation of this model
crucially relies on time-scale separations induced by the
rotational inertia of the generators its validity for low-
inertia power systems is highly questionable. For instance,
if power electronics are modeled as a constant power source
and all generators are removed only algebraic equations
remain. Moreover, it is not clear which dynamics of power
electronics devices need to be included, or how the AC
signals which connect the power electronics to the grid
enter into the swing equation.

One approach to mitigate the loss of rotational inertia is
to use power electronic devices to provide virtual inertia.
These control schemes typically measure AC signals which
are not present in the swing equation (Zhong and Weiss,
2011; D’Arco and Suul, 2013; Sinha et al., 2015). As a
first step towards overcoming these limitations, we pro-
pose a first-principles model of a power system containing
synchronous machines, DC/AC inverters, as well as trans-
mission line and voltage bus dynamics. The models of the
generator and the network are based on the detailed port-
Hamiltonian power system model proposed in Fiaz et al.
(2013) and combined with an averaged DC/AC inverter
model proposed by Jouini et al. (2016). In contrast to
typical inverter models, we explicitly consider the dynam-
ics of the DC-link capacitor, which is the dominant time
constant of the DC/AC inverter dynamics.

We seek answers to similar questions as in our previous
works on conventional power systems (Arghir et al., 2016;
Grof3 et al., 2016): under what conditions does the system
admit a steady-state in which all three-phase AC signals
are balanced, sinusoidal, and of the same synchronous
frequency. We provide an algebraic characterization that
specifies the state variables, control inputs, and a syn-
chronous frequency such that the dynamics of the power
system coincide with the desired steady-state dynamics.
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This analysis constructively leads to necessary conditions
that any controller for the power system has to satisfy in
steady-state. Specifically, we show that the set of states
and control inputs on which the dynamics coincide is
control-invariant if and only if the DC current supplied
to the inverter as well as all generator inputs are con-
stant, and the inverter switching block operates at the
synchronous frequency. Several heuristic inverter control
strategies (“heuristic” in the sense that they are not con-
structed from a priori specifications), such as droop control
(Dorfler et al., 2016), virtual oscillator control (Sinha et al.,
2015), synchronverters (Zhong and Weiss, 2011), genera-
tor emulation (D’Arco and Suul, 2013), matching control
(Jouini et al., 2016), and grid-following control (Tabesh
and Iravani, 2009), implicitly satisfy these specifications
in steady-state. Moreover, the steady-state specifications
for the generators justify assumptions used in the sta-
bility analysis of multi-machine networks (Caliskan and
Tabuada, 2014).

2. NOTATION AND PROBLEM SETUP
2.1 Notation

We use R and N, to denote the set of real numbers and
integers, and e.g. R+ to denote the set of positive real
numbers. For column vectors x € R", y € R™ we use
(z,y) = [z7 yT]T € R™™ to denote a stacked vector,
and for vectors or matrices x, y we use diag(z,y) = [§ ) ].
Furthermore, I,, denotes the identity matrix of dimension

n, ® denotes the Kronecker product, and ||z|| = vz Tz
denotes the Euclidean norm. Matrices of zeros and ones of
dimension n x m are denoted by O, x,, and 1, xm, and 1,
denotes a column vector of ones of length n.

2.2 Dynamical Model of a Power Network

The power system model used in this work consists of ng
generators with index set G = {1,...,n4}, n; DC/AC
inverters with index set I = {ny+1,...,n4+n;}, n, voltage
buses with index set V = {1,...,n,}, and n; transmission
lines with index set T = {1,...,n;}. The AC voltage buses
are partitioned into generator buses Vy = {1,...,n4}, n;
inverter buses V; = {ny+1,...,ny+n;}, and n; load buses
Vi={ng+ni+1,...,n5+n;+n}, ie. ny = ng+n;+ny.
The components of the power system as well as the main
signals and parameters are depicted in Figure 1.

The model used in this manuscript combines a DC/AC
inverter model proposed by Jouini et al. (2016) with a
variant of the port-Hamiltonian power system model by
Fiaz et al. (2013) used in Arghir et al. (2016). The reader
is referred to these references for detailed derivations
and discussions of the models. Based on the following
assumption all three-phase AC signals are represented in
(a, B) coordinates.

Assumption 1. All three-phase AC quantities are assumed
to be balanced. Moreover, we assume that all three-
phase electrical components (resistance, inductance, ca-
pacitance) have identical values for each phase.

Inverter Dynamaics:
We consider a three-phase DC/AC inverter consisting of
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a DC-link capacitor, a switching block that modulates
the DC-link capacitor voltage into an AC voltage, and an
output filter. For the time scale of interest, we assume
that the switching frequency is high enough and that the
switching harmonics are suppressed by the output filter.
By averaging the behavior of the switching block over
one switching period, an averaged model of the inverter
is obtained (Tabesh and Iravani, 2009; Jouini et al., 2016).
The dynamics of the k-th inverter, with k € I, is given by:

qrx = *Gl,kC;;iQI,k + Gow,k (A1l ME) + Tde ks (1a)

Ark = —RrpL Ak + Oyl ae — vewk(qre,mi),  (1b)
with DC-link capacitor charge qr; € R>q, output filter
flux A1k = Mok, A1.5.k) € R% The AC-side capacitor,
with charge gx = (qak,qsk) € R?, interconnects the
inverter to the grid and will be described later in the model
of the AC voltage bus dynamics. The control inputs of the
inverter are the modulation signal mj € R?, which has to
satisfy ||mg| < 1, and the current i4. supplied to the
DC-link capacitor. In other words, we assume that ig. k
is supplied by a controllable source, e.g. a boost converter
connected to photovoltaics and/or a battery.

The averaged output voltage vsy k(g1 k, mk) and switching
current iy k(A1 K, Mi) are given by:
(2a)

Vs, k (Q1,k, M) = %C;iql,kmk (2b)
The DC capacitance and conductance are denoted by
C[JC S R>0 and G],k € R>0 and Li,k = IQl[,k, l]}k c R>0
and Ry = Isrrg, r1x € Ry denote the inductance and
resistance of the output filter.

. 1N\ T —1
Gsw,k (ALks M) = A L7 ks

Synchronous Generator Dynamics:
A generator with index k € G is modeled by

ék = Mk_lplc
Pr = =DMy ™ pr = Te ks Ak, k) + Ton i

. —1
e = —RiLy (A + [Cgf gk] ,

(3a)
(3b)

(3¢)

where A, = Ak, Ark) € R3 represents the stator flux
linkage Asx = (AaksAgk) € R? and rotor flux linkage
Ark € R, pr € R is the momentum of the rotor, and
0k € R its angular displacement. The generator is actuated
by the voltage vyj € R across the excitation winding
of the generator and the mechanical torque 7., € R
applied to the rotor. The electrical torque acting on the
rotor is denoted by 7. k(Mg 0k) = %(%)\Zﬁaikk). The
inertia and damping of the rotor are given by Mj €
Rso and Dy € Ry, and the windings have resistance
Ry = diag(Rs’k,Tf’k) with Rs,k = IQT'S,]C, sk € R<o,
and rs ) € Ryg. The inductance matrix Lo : R — R3*3
is a function of the angle 6, and defined based on the
stator inductance Ly, = Iols 1 € Rif, mutual inductance

Ly = (lmk,0) € R2>0, and rotor inductance I, ;, € Ry :
Lsk  RoLmk cos(fy) — sin(6y)
r _ ER k ) Ro = | .
0.k [L,TMR;;C L |7 7%% 7 |sin(0) cos(6y)
For notational convenience, we introduce skew symmetric
matrices j € R?*2 and 7 € R3*3:

.0 -1 |7 02
=[] el )
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