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Dual porosity models become increasingly used for simulating groundwater flow at the large scale in fractured
porous media. In this context, model inversions with the aim of retrieving the system heterogeneity are fre-
quently faced with huge parameterizations for which descent methods of inversion with the assistance of adjoint
state calculations are well suited. We compare the performance of discrete and continuous forms of adjoint states
associated with the flow equations in a dual porosity system. The discrete form inherits from previous works by
some of the authors, as the continuous form is completely new and here fully differentiated for handling all types
of model parameters. Adjoint states assist descent methods by calculating the gradient components of the ob-
jective function, these being a key to good convergence of inverse solutions.

Our comparison on the basis of synthetic exercises show that both discrete and continuous adjoint states can
provide very similar solutions close to reference. For highly heterogeneous systems, the calculation grid of the
continuous form cannot be too coarse, otherwise the method may show lack of convergence. This notwith-
standing, the continuous adjoint state is the most versatile form as its non-intrusive character allows for plugging

an inversion toolbox quasi-independent from the code employed for solving the forward problem.

1. Introduction

Various hydrological studies are increasingly employing dual por-
osity models that fully overlap two matrix and fracture continua for the
purpose of performing tractable calculations of flow and transport in
underground fractured systems as exemplified by Neuman (2005),
Bourbiaux (2010), and Lemonier and Bourbiaux (2010a,b). The
homogenization of fracture fields provided by the continuous approach
(Warren and Root, 1963; Gerke and Van Genuchten, 1993) is conducive
to investigate the dynamics of large-scale systems such as regional
groundwater reservoirs (e.g., Follin and Thunvik, 1994; Cornaton and
Perrochet, 2002; Trottier et al., 2014). Nevertheless, conditioning these
large-scale homogenized problems regarding, for instance, their hy-
drodynamic parameters is often plagued by the absence of data or the
non-representativeness of measures at the mesh scale of a regional
model. For example, Noetinger and Estebenet (2000), and
Landereau et al. (2001), clearly showed via homogenization techniques
or numerical experiments that an important amount of information on a
fracture network was needed to assign correctly hydraulic parameters
to a dual porosity model. Therefore, modeling highly heterogeneous
media has to be flanked with inversion procedures that seek model
parameters, most often by relying upon history-matching exercises, in
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the sense of a comparison between model outputs and available flow
data. To mention a few: steady-state or transient hydraulic heads in
natural flow conditions, interference testing between wells during
forced flow conditions (e.g., Pourpak et al., 2009; Ackerer and Delay,
2010), and hydraulic tomography (e.g., Brauchler et al., 2013; Illman,
2014).

The parameterization of a model, taken here as the way to diminish
the number of parameters sought by inversion is also a key to retrieve
the heterogeneity of the modeled system (e.g., Hendricks-Franssen
et al., 2009; Zhou et al., 2014). Many techniques exist such as zonation
(e.g., Roggero and Hu, 1998; Hayek et al., 2009; Pasetto et al., 2013),
pilot-points (de Marsily et al., 1984; Ramarao et al., 1995; Alcolea et al.,
2006), master points (Gomez-Hernandez et al., 1997; Capilla et al.,
1998), and various interpolations of local seed parameter values
(Mantoglou, 2003; Hassanne and Ackerer, 2017). In many cases,
parameterization still asks for large numbers of parameters as degrees
of freedom to the inversion of the flow model. These large numbers are
not suited to the implementation of optimization techniques employing
the class of evolutionary algorithms such as genetic algorithms (e.g.,
McKinney and Lin, 1994; Karpouzos et al., 2001), particle swarm op-
timizations (Robinson and Rahmat-Samii, 2004) and Markov Chain
Monte Carlo (e.g., Vrugt et al., 2009); all these being usually applicable
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to weakly parameterized problems, with few exceptions. One of them
involves Markov Chains coupled with parameter field decompositions
and application to heterogeneous hydrological systems (mainly, hy-
draulic conductivity fields, e.g., Laloy et al., 2013; Mara et al., 2015).
Finally, classical descent direction methods as exemplified in, e.g.,
Carrera and Neuman (1986b), Carrera (1988), and Tarantola (2005),
appear better suited to highly parameterized problems. Nevertheless,
descent methods require precise calculations of directions in the para-
meter space along which a set of parameters is moved toward a solution
that fits the model to data.

Since their origin, dual porosity models have been enhanced, with,
for example, the studies by Pruess and Nakasimhan (1982,1985) in-
itiating the multiple interacting continua (MINC) models, then revisited
in the last ten years, mainly on the complexity of mass exchanges be-
tween fracture and matrix compartments (Karimi-Fard et al., 2006;
Tatomir et al., 2011; De Dreuzy et al., 2013). This notwithstanding,
dual porosity model inversion did not receive much attention except for
a few recent works (Kaczmaryk and Delay, 2007; Ray et al., 2012;
Trottier et al., 2014; Ackerer et al., 2014). The point is that in dual
porosity models the strong heterogeneity of parameters, associated with
highly variable sensitivity of the model to parameters, hinder inversion
techniques relying upon descent directions calculated with model sen-
sitivities (Delay et al., 2007). Since each sensitivity calculation requires
solving equations similar to that of the forward problem, duplicating
the procedure over a whole set of parameters with "unstable" sensitiv-
ities may render the inverse problem intractable with numerous itera-
tions that hardly converge into a valuable solution.

Fortunately, descent methods manipulating high numbers of para-
meters can also rely upon Quasi-Newton optimization algorithms, the
latter simply asking for the calculation of the gradient components of
the objective function (e.g., Carrera and Neuman, 1986b; Carrera,
1988; Carrera et al., 2005; Tarantola, 2005). In that case, the adjoint
state (i.e., a set of Lagrangian multipliers associated with model equa-
tions as the additional constraints to the minimization of the objective
function; see hereafter for details) may help in evaluating the gradient
components (e.g., Townley and Wilson, 1985; Yeh, 1986). Evaluating
the adjoint state requires a single calculation similar to that of the
forward problem, irrespective of the number of sought parameters. The
downside is that Quasi-Newton algorithms are far less efficient than
methods based on model sensitivities and may show very slow con-
vergence.

Even though fundamentals of the adjoint state calculations were
posed between the late sixties and the mid-seventies (Lions, 1968;
Chavent 1971; Chavent, 1975), the technique has not been employed
intensively in the domain of hydrology. A few pioneering illustrations
are available in Neuman (1980), Townley and Wilson (1985) or
Yeh (1986) for seeking (with success) hydraulic parameters under
steady-state flow. They were followed by, for example, Sun (1994) who
developed the adjoint states for various configurations of flow and
transport in groundwater systems, Medina and Carrera (2003) who
inverted source terms in a flow-transport coupled problem, and Ackerer
and Delay (2010), Ackerer et al. (2014) who inverted flow in a lime-
stone aquifer on the basis of interference data. One can distinguish
between the continuous form (e.g., Chavent 1975) and the discrete
form (e.g., Townley and Wilson, 1985) of the adjoint state but it is
worth noting that most applications rely upon discrete approaches.
However, the discrete adjoint state has the drawback in its im-
plementation of requiring the complete structure of the (discrete)
equations of the forward model (see hereafter). The discrete adjoint
state must be developed specifically for the code of the forward pro-
blem, and therefore, cannot be seen as part of a separate inversion
toolbox plugged into a numerical model to seek optimal model para-
meters. This is probably the main reason why discrete adjoint state
techniques are not widely available and used.

The continuous adjoint state is grounded in a variational formula-
tion of the continuous equations that rule the forward model (see
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hereafter), this formulation then being discretized and calculated by
any means, eventually independent of the way the forward problem is
solved. This feature renders the technique versatile. Notably, calcula-
tions of both the adjoint state and gradient components of the objective
function need for results imported from the forward model. This ex-
change of information between two separate models, eventually cal-
culated differently, may result in a slight denaturation of the exchanged
information that has been made compatible between the two models. In
addition, most developments of continuous adjoint states are not gen-
eric, meaning that they are built to invert a specific type of parameter in
a model (e.g., Sun, 1994).

We propose in this study a fair comparison between discrete and
continuous forms of adjoint states by assessing their ability to assist a
Quasi-Newton descent algorithm that inverts a flow problem in a het-
erogeneous dual porosity system. To our best knowledge, this type of
comparison has never been undertaken, the eventual discrepancies and
inaccuracies of the continuous adjoint state being generally conjectured
and not demonstrated. We first propose a discussion on the funda-
mentals that define both the discrete and continuous adjoint states.
These are in general not well known, even though they clearly picture
the main differences between the two forms of adjoint states
(Section 2).

In the comparison, we employ a discrete adjoint state formalism
already developed by some authors of the present contribution
(Ackerer et al., 2014). The continuous adjoint state applied to flow in a
dual porosity model is here fully developed because no attempt on the
topic appeared to date in the literature and because the proposed form
is applicable to the assessment of any type of parameter in a dual
porosity model (Section 3). We do not cope with the inversion of
boundary conditions, even though it can be noted that these specific
evaluations, as for the discrete adjoint state (see Ackerer et al., 2014),
do not require more than the development proposed for inverting
model parameters. We acknowledge however that we did not consider
the inversion of sink-source terms.

Discrete and continuous adjoint states are compared on the basis of
synthetic test cases of inversion that allow us to know the reference
solution to the flow problem investigated (Section 4). We can therefore
clearly evaluate to what extent the different forms of adjoint states are
useful to retrieve the heterogeneity of parameter fields, how the sought
solutions generate model outputs that fit conditioning data; and finally,
how the inversion procedure is repeatable in the sense that it provides
multiple solutions close together even though they have been initiated
at different locations in the parameter space. We acknowledge that this
type of study employing synthetic tests cases is problem dependent, and
the cases analyzed only represent an illustration of the strengths and
weaknesses of discrete versus continuous adjoint states. Nevertheless,
these cases are aimed at the representation of a wide range of problems
in relation with, e.g., groundwater flow in chalk and limestone frac-
tured aquifers.

2. Discrete versus continuous adjoint states

Before detailing how to derive a continuous adjoint state for in-
verting dual porosity models of flow in porous fractured rocks, it may
be useful to review the general context of inversion under constraints
and the main differences in the formalism of adjoint states, either dis-
crete or continuous. Let us take for the sake of simplicity a groundwater
flow problem handling Darcian flow under steady-state conditions in a
single porosity system. As is very well known, this problem is modeled
in a finite domain Q by the following equation:

V.(-KVh)+q=0

K [LT™'] is the hydraulic conductivity of the system corresponding
to the model parameter, h [L] is the hydraulic head corresponding to
the state variable of the problem, and q [T~ 11 is a local sink-source term
corresponding to volumetric fluxes extracted/injected per unit volume
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