
Computers and Fluids 159 (2017) 338–355 

Contents lists available at ScienceDirect 

Computers and Fluids 

journal homepage: www.elsevier.com/locate/compfluid 

A particle tracking algorithm for parallel finite element applications 

Giacomo Capodaglio 

∗, Eugenio Aulisa 

Department of Mathematics and Statistics, Texas Tech University, Broadway and Boston Lubbock, TX 79409-1042 United States 

a r t i c l e i n f o 

Article history: 

Received 16 February 2017 

Revised 14 July 2017 

Accepted 11 October 2017 

Available online 13 October 2017 

Keywords: 

Particle tracking 

Point-Locating algorithm 

Parallel computing 

Unstructured mesh 

Finite elements 

a b s t r a c t 

Numerical simulations of a particle tracking algorithm on parallel unstructured finite element grids are 

presented. The algorithm is designed to work for both 2D and 3D applications. To determine the position 

of the particle relative to the mesh, a new point-locating algorithm is proposed. The advection of the 

particle is performed on the physical domain in order to treat completely unstructured grids. As a con- 

sequence, the inversion of the isoparametric finite element mapping is requested. We comply with this 

demand implicitly using Newton–Raphson’s iteration for linear, quadratic, bi-quadratic and tri-quadratic 

finite elements, and several element geometries, including quadrilaterals, triangles, tetrahedra, wedges 

and hexahedra. To investigate the performances of the proposed algorithm, results of standard numerical 

tests are shown, together with a fluid flow application that exemplifies an instance of a particle tracking 

problem. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Particle tracking is employed in a variety of computational ap- 

plications that range from fluid dynamics to biomedicine. When 

parallel simulations are performed in such applications, the com- 

putational domain is divided in subdomains and each subdomain 

is handled by a given process. In multi-phase flow simulations, 

the evolution of the interface between different phases can be 

modeled by tracking specific points that lie on the interface [1–

3] . Particle-in-cell type algorithms [4–8] need to follow the move- 

ment of particles within the computational grid. Recent works cou- 

pled particle tracking with Navier–Stokes equations in laminar and 

turbulent flow regimes to describe particle deposition in human 

airways and lungs [9–13] . Another interesting biomedical applica- 

tion is the modeling of magnetic drug targeting for medical treat- 

ments [14–18] . Different approaches have been carried out to per- 

form the tracking. A crucial problem that needs to be addressed is 

the determination of the position of the particle within the com- 

putational grid. In the case of structured grids, such an issue can 

be solved almost trivially. However, for most applications, unstruc- 

tured grids need to be employed and the design of an efficient 

point-locating algorithm becomes a challenging task. Many meth- 

ods have been proposed in the literature to address this matter 

[19–28] . In this work, we aim to design a particle tracking algo- 

rithm that is suitable for 2D and 3D parallel finite element ap- 

plications with unstructured and possibly curved edges (in 2D) 

∗ Corresponding author. 

E-mail address: giacomo.capodaglio@ttu.edu (G. Capodaglio). 

and non-planar faces (in 3D) that arise from a finite element set- 

ting. For this, we need a point-locating scheme that can perform 

well in this context. Algorithms like those developed by Zhou and 

Leschziner [26] and Chen and Pereira [27] determine if the par- 

ticle lies inside an element of a 2D grid checking the so called 

particle-to-the-left condition. This condition works fine for convex 

polygons but fails to detect a point that lies inside a concave ele- 

ment. Therefore these two methods would fail if we consider el- 

ements in 2D with curved edges approximated by line segments. 

For the same reason the method by Chordá et al. [23] would fail 

in this situation. The approach of Haselbacher et al. [20] could 

work in 2D if curved edges were approximated by line segments. 

Kuang et al. however, pointed out in [24] that the way non-planar 

faces are dealt with in [20] is not the most straightforward. Kuang 

et al. addressed the case of non-planar faces on 3D unstructured 

grids in [24] . The authors provide a summary of the main meth- 

ods developed in the literature observing how early approaches do 

not represent reliable methods in case of non-planar 3D faces, due 

to the presence of what they called a virtual gap. Kenjereš et al. 

[16] observed that when employing a tetrahedral decomposition of 

the elements of the grid, the virtual gap problem can be avoided 

performing multiple decompositions and choosing one that is ap- 

propriate. Macpherson et al. [29] developed an algorithm that re- 

places each non-planar face in 3D by a so called effective plane. 

They also addressed the problem of concave cells pointing out that 

their algorithm would fall into an infinite loop in such case and 

suggested that concave cells should be decomposed into smaller 

convex cells. To avoid dealing with the virtual gap problem, Kuang 

et al. proposed in [24] a triangular decomposition of the faces of 

https://doi.org/10.1016/j.compfluid.2017.10.015 

0045-7930/© 2017 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.compfluid.2017.10.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2017.10.015&domain=pdf
mailto:giacomo.capodaglio@ttu.edu
https://doi.org/10.1016/j.compfluid.2017.10.015


G. Capodaglio, E. Aulisa / Computers and Fluids 159 (2017) 338–355 339 

a given 3D element. However they also observed that, in this way, 

concave polyhedra are obtained and that there is no generalized 

point-locating scheme available for a concave grid. As a matter of 

fact, in their method, the triangle decomposition is performed only 

on non triangular faces. This means that, for instance, tetrahedral 

elements will not be involved in this process. Nevertheless when 

employing isoparametric finite elements, tetrahedral elements can 

be deformed and have curved faces. Therefore an even more gen- 

eral point-locating scheme than the one described in [24] needs to 

be appropriately designed to deal with finite element applications. 

The point-locating procedure we propose has a simple approach 

and it makes use of what we consider the best features of the 

algorithms present in the literature. It will be described in detail 

in Section 2 . We now outline the steps that make up the particle 

tracking algorithm presented in this paper. We start from a given 

domain discretized with a structured or unstructured mesh and a 

velocity field known only at the nodes of the grid (in the finite el- 

ement sense). Such a velocity field may be obtained numerically, 

for example it could be the solution of the Navier–Stokes equa- 

tions. Assuming we know the position of a particle in the domain 

subject to the velocity field at a given initial time t 0 , the goal is to 

determine its position at a time t > t 0 . The structure of the method 

can be broken down in three major parts. 

• The advection of the particle 

The position x p of the particle is related to the velocity field v 

by the equation 

dx p 

dt 
= v . We solve this ODE via numerical in- 

tegration, using Runge–Kutta (RK) schemes of different orders. 

Even if we implemented the forward Euler method, Heun’s 

method (or RK2), RK3 and RK4, for the numerical simulations 

that follow we chose RK4 for its greater accuracy. The advected 

particle moves from its initial position to a new position that 

may or may not be on the same element from which it started. 

In a parallel framework, the next element that hosts the parti- 

cle may not even belong to the process that started the numer- 

ical integration. This instance has to be taken in consideration 

when implementing the advection step by properly organizing 

the exchange of information between processes. 
• The localization of the particle 

To proceed with the next advection step, the velocity field at 

a given point has to be computed via interpolation using the 

known values at the nodes of the element. This means that any 

time the particle moves to a different element, the values of 

the velocity field have to be updated. Therefore, at every time 

t , we need to know the element hosting the particle. This is 

where the point-locating algorithm comes into play. Extra care 

needs to be exerted when implementing such an algorithm in 

a parallel setting, as it will be shown in the next section. 
• The inversion of the isoparametric mapping 

In a finite element setting, a reference element is employed and 

the reference system associated to it is called the local refer- 

ence system. The finite element isoparametric mapping is the 

function that maps the reference element onto a given element 

in the global reference system (see Section 3 ). The local coor- 

dinates of the particle are needed to update the value of the 

velocity field via interpolation. Therefore, after every advection 

step, using the new global coordinates of the particle we need 

to determine the local coordinates that correspond to the new 

position of the particle in the global reference frame. To achieve 

this, the inversion of the isoparametric finite element mapping 

is necessary. This is done with an iterative method as it will be 

explained later in detail. 

The paper is structured as follows. In Section 2 we present the 

parallel point-locating scheme that we employed within the parti- 

cle tracking algorithm. We describe how the parallel implementa- 

tion is carried out and what can be done to speed up the search. In 

Section 3 we describe the way that the Newton–Raphson scheme 

has been implemented to iteratively find the action of the inverse 

isoparametric mapping, knowing the nodes of a given element and 

the coordinates of the particle in the global reference frame. In 

Section 4 a description of the complete algorithm will be given, to- 

gether with an explanation on how the different pieces that make 

it up are related to each other. In Section 5 we describe the results 

of standards test that we performed in order to validate our algo- 

rithm together with a tracking application of particles dispersed in 

a fluid flow inside a curved pipe. We conclude summarizing the 

results and discussing future applications. 

2. A point-locating algorithm for parallel grids 

In this section we describe a new point-locating algorithm for 

parallel finite element applications. The coordinates of a point in 

a 2-dimensional or 3-dimensional space are given together with a 

domain D discretized using a quasi-uniform finite element trian- 

gulation T [30,31] . With a little abuse of terminology, we will use 

the term triangulation even when the elements involved are not 

triangles. The purpose of the algorithm is to determine whether 

or not the given point lies within the domain and if it does, iden- 

tify the element of the triangulation it belongs to. The algorithm 

is designed to work in a parallel environment where the load of 

elements to be tested for inclusion is divided among different pro- 

cesses. Once a given element has failed the inclusion test, informa- 

tion is produced in order to continue the search moving to a dif- 

ferent element that is more likely to include the point. In the par- 

ticle locating algorithms present in the literature, this is achieved 

making use of the new position of the particle obtained after the 

advection step. However, at the beginning of the algorithm, no ad- 

vection has been performed and so a brute force search through- 

out all the elements of the grid is required in order to locate the 

particle. This is really demanding in a 3D case especially when the 

grid is composed by many elements or if there are many parti- 

cles to track. Instead of using the trajectory of the particle to de- 

termine the next element, we propose an advection independent 

search path. Instead of using the position of the particle at two 

different instants of time, we make use of the line (in paramet- 

ric form) passing through a point appropriately chosen in the in- 

terior of the element and the particle to be tracked. This idea was 

also present in [32] but it was only used as an additional tool of 

a modified version of their algorithm and not as the official way 

of determining the search path of the particle like we are doing. 

With this, after an initial guess element is chosen, we can move 

inside the mesh until the particle is located, without having to per- 

form any advection and without the need to test all elements of 

the grid. Our approach is much more general than the one sug- 

gested by Vaidya et al. [19] that only works for quadrilateral ele- 

ments in 2 dimensions. Moreover, our algorithm works for concave 

elements and does not incur in an infinite loop like in [32] . This 

represents one of the novelties of the point-locating algorithm of 

this paper. The choice of the initial guess element together with a 

way to speed up the search will be discussed in the rest of this 

section. 

The point-locating algorithm is subdivided in two main parts, 

the actual inclusion test and, in case of a negative result, the par- 

allel transmission of information necessary to test a new element. 

2.1. The inclusion test 

We now present the inclusion test algorithm. We first describe 

the situation where the polygon to be tested for inclusion is just a 

triangle. This is because in the 3D algorithm we decompose each 

element face in triangles, in order to properly handle situations 



https://isiarticles.com/article/142978

