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a b s t r a c t 

Motivated by recent experiments on submonolayer organic film growth with anomalous diffusion, a general 

rate-equation (RE) theory of submonolayer island nucleation and growth was developed (Amar and Semaan, 

2016) [23], which takes into account the critical island-size i , island fractal dimension d f , substrate dimension 

d , and diffusion exponent 𝜇, and good agreement with simulations was found for the case of irreversible growth 

corresponding to a critical island-size 𝑖 = 1 with 𝑑 = 2 . However, since many experiments correspond to a critical 

island-size larger than 1, it is of interest to determine if the RE predictions also hold in the case of reversible 

island nucleation with anomalous diffusion. Here we present the results of simulations of submonolayer growth 

with 𝑖 = 2 ( 𝑑 = 2 ) which were carried out for both the case of superdiffusion ( 𝜇 > 1) and subdiffusion ( 𝜇 < 1) as 

well as for both ramified islands ( d f ≃ 2) and point-islands ( 𝑑 𝑓 = ∞) . In the case of superdiffusion, corresponding 

to ‘hot ’ freshly deposited monomers, excellent agreement is obtained with the predictions of the generalized RE 

theory for the exponents 𝜒( 𝜇) and 𝜒1 ( 𝜇) which describe the dependence of the island and monomer densities 

at fixed coverage on deposition rate F . In addition, the exponents do not depend on whether or not monomers 

remain superdiffusive or are thermalized (e.g. undergo regular diffusion) after detaching from a dimer. However, 

we also find that, as was previously found in the case of irreversible growth, the exponent 𝜒 only approaches its 

asymptotic value logarithmically with increasing 1/ F . This result has important implications for the interpretation 

of experiments. Good agreement with the RE theory is also found in the case of subdiffusion for point-islands. 

However, in the case of ramified islands with subdiffusion and 𝑖 = 2 , the exponents are significantly higher than 

predicted due to the fact that monomer capture dominates in the nucleation regime. A modified RE theory which 

takes this into account is presented, and excellent agreement is found with our simulations. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Recently, there has been significant interest in the effects of anoma- 

lous monomer diffusion [1–17] on submonolayer island growth [18–

23] . This interest has been partially stimulated by recent experiments 

[19–21] in which values of the exponent 𝜒 which describes the depen- 

dence of the peak island density N pk on the (per site) monomer deposi- 

tion rate F (e.g. N pk ∼ F 𝜒 ) were obtained which were significantly larger 

than 1. This result is in contrast to the standard rate-equation (RE) the- 

ory prediction [24,25] that in the case of deposition on a 2D substrate 

with ordinary monomer diffusion (and assuming the existence of a crit- 

ical cluster size i such that clusters larger than i are stable while clusters 

of size i and below are unstable) one has 𝜒 = 𝑖 ∕( 𝑖 + 2) . 
While this result applies in the case of ordinary diffusion such that 

the dependence of the mean-square monomer displacement on time t 

satisfies ⟨r 2 ( t ) ⟩ ∼ t 𝜇 with 𝜇 = 1 , it does not apply in the case of anomalous 

diffusion. In particular, in Ref. [20] it was suggested that the large value 

of the exponent 𝜒 found in the case of submonolayer growth of para- 
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hexaphenyl [19] on amorphous mica may be explained by the existence 

of transient hyperthermal behavior which leads to ballistic monomer 

diffusion ( 𝜇 = 2 ). Similar results, e.g. 𝜒 > 1, have also been obtained 

in the case of submonolayer growth of pentacene on amorphous mica 

[21] . In addition, in Ref. [22] a RE approach was used to show that for 

the case of compact islands on a 2D substrate, ballistic diffusion implies 

that 𝜒 = 2 𝑖 ∕( 𝑖 + 3) . We note that transient hyperthermal behavior has 

also been recently observed in the deposition of Pd/MgO [14] as well as 

in experiments on pulsed laser deposition [10,17] . In contrast, anoma- 

lous diffusion with 𝜇 < 1 has been predicted to occur in the case of 

diffusion on disordered surfaces [1,12] as well as in biological systems 

[15,16] and has also been observed experimentally in the diffusion of 

colloidal nanoparticles on a surface [13] . 

Motivated by this work, one of us has recently developed a RE the- 

ory [23] which leads to general expressions for the exponent 𝜒 as a 

function of the critical island size i , substrate dimension d , island frac- 

tal dimension d f , and diffusion exponent 𝜇, where 0 ≤ 𝜇 ≤ 2. Here the 

island fractal dimension is defined by the relation 𝑟 ∼ 𝑆 

1∕ 𝑑 𝑓 where r is 
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the radius of an island and S is the size (number of monomers) in an 

island. General expressions were also obtained [23] for the dependence 

of the exponent 𝜒1 , which describes the dependence of the monomer 

density N 1 on deposition rate F at fixed coverage 𝜃 (e.g. 𝑁 1 ( 𝜃; 𝐹 ) ∼ 𝐹 𝜒1 

where 𝜃 corresponds to the fraction of the substrate which is covered by 

monomers and/or islands) in the aggregation regime on i, d, d f , and 𝜇. 

Expressions were also obtained for the exponents 𝜒 ′ and 𝜒 ′
1 which de- 

scribe the deposition-rate dependence of the island and monomer den- 

sities at fixed dose 𝜙 = 𝐹 𝑡 ( 𝑁( 𝜙; 𝐹 ) ∼ 𝐹 𝜒
′

and 𝑁 1 ( 𝜙; 𝐹 ) ∼ 𝐹 
𝜒 ′
1 ) where 𝜙

corresponds to the number of atoms deposited per adsorption site. As 

part of this work, two distinct cases were identified - one corresponding 

to 𝜇 < 𝜇c and the other corresponding to 𝜇 > 𝜇c - where 𝜇𝑐 = 2∕ 𝑑 for 

finite d f or for point-islands with d ≤ 2 and 𝜇𝑐 = 1 otherwise. 

The results obtained in Ref. [23] were based on the assumption that 

N 1 ≪ N in the aggregation regime along with the assumption that for i > 

1 the Walton relation [26] 𝑁 𝑖 ∼ 𝑁 

𝑖 
1 (where N i is the density of islands of 

size i ) holds for anomalous diffusion. In addition, while excellent agree- 

ment was found [23] between simulations and the RE theory for the case 

of irreversible growth ( 𝑖 = 1 ), simulations were not carried out for the 

case i > 1. This case is of particular interest since many experiments, in- 

cluding those discussed in Refs. [19–21] , are also believed to correspond 

to a critical island-size which is significantly larger than 1. In addition, 

we note that in the case of superdiffusion ( 𝜇 > 1) with i > 1 two distinct 

physical situations may occur - one in which monomers which detach 

from islands also travel superdiffusively [7,11] , and another in which 

they are thermalized and undergo normal diffusion. It is also of inter- 

est to know if the Walton relation will hold in both of these cases and 

whether or not they correspond to different scaling behaviors. 

Motivated by these considerations, here we present the results of 

simulations of reversible submonolayer island growth with 𝑖 = 𝑑 = 2 for 

both ramified ( d f ≃ 2) and point ( 𝑑 𝑓 = ∞) islands which were carried 

out for both the case of subdiffusion ( 𝜇 < 1) and superdiffusion ( 𝜇 > 

1). In the case of superdiffusion, excellent agreement is obtained with 

the RE theory predictions of Ref. [23] for both ramified islands and 

point-islands. We also find that in this case the scaling behavior does 

not depend on whether or not detached monomers are thermalized or 

remain superdiffusive. Similarly, good agreement with the RE theory 

predictions of Ref. [23] is also found in the case of subdiffusion for point- 

islands ( 𝑑 𝑓 = ∞). These results indicate that the Walton relation, along 

with the scaling arguments used in Ref. [23] , both apply in these cases. 

However, in the case of ramified islands with subdiffusion with 𝑖 = 2 , the 

RE assumption that N 1 ≪ N in the dominant portion of the nucleation 

regime turns out not to hold. As a result, monomer capture dominates 

while the nucleation regime extends to a coverage which is relatively 

independent of the deposition rate. A modified RE theory which takes 

this into account is presented, and excellent agreement is found with 

our simulations. 

This paper is organized as follows. In Section 2 we first review the RE 

theory, while in Section 3 we discuss the details of our simulations. We 

then present our simulation results in Section 4 and compare with the 

corresponding RE theory predictions. Finally, in Section 5 , we present 

our conclusions and discuss possible future work. 

2. Rate-equation theory 

Before discussing our simulations in detail we first briefly review 

the RE theory discussed in Ref. [23] . In particular, assuming that only 

monomers are mobile as well as the existence of a critical island-size i , 

in the pre-coalescence regime one may write the following set of con- 

tracted REs for the evolution of the monomer density N 1 and stable 

island density N (where 𝑁 = 

∑∞
𝑖 +1 𝑁 𝑠 and N s is the density of islands of 

size s , where s is the number of monomers in an island), 

𝑑𝑁 1 
𝑑𝜙

= 𝐶 𝜃 − 2 𝑅𝜎1 𝑁 

2 
1 − 𝑅𝑁 1 𝜎𝑎𝑣 𝑁 (1) 

dN 

𝑑𝜙
= 𝜃1− 𝑑 𝑓 ∕ 𝑑 𝑁 

𝑑 𝑓 ∕ 𝑑−1 ×
( 

dN 

𝑑𝜃

) 

= 𝑅𝑁 1 𝜎𝑖 𝑁 𝑖 (2) 

where 𝜙 = 𝐹 𝑡 is the dose, F is the deposition rate in monolayers (ML) 

per second and 𝑅 = 𝐷∕ 𝐹 , where D is the monomer hopping rate. Here 

the capture numbers 𝜎s correspond to the propensity of an island of 

size s to capture a diffusing monomer and are defined via the relation 

𝛼𝑠 = 𝐷𝑁 1 𝑁 𝑠 𝜎𝑠 where 𝛼s is the average monomer capture rate for an 

island of size s . Also, 𝜎𝑎𝑣 ≡
1 
𝑁 

∑
𝑠>𝑖 𝜎𝑠 𝑁 𝑠 is the average capture number 

for stable islands, and 𝐶 𝜃 ≃ 1 − 𝜃 − 

∑𝑖 

𝑠 =2 𝑁 𝑠 ( 𝑅𝑁 1 𝜎𝑠 − 𝛾𝑠 ) where 𝛾s is the 

(monomer) detachment rate for islands of size s ≤ i . 

Assuming that in the asymptotic limit of large D / F , one has N s ≪ 

N ≪ 1 for 1 ≤ s ≤ i implies that 𝐶 𝜃 ≃ 1 − 𝜃. Combining this with the 

steady-state assumption that at late-time 
𝑑𝑁 1 
𝑑𝜙

≃ 0 implies, 

𝑁 1 ≃
1 

𝑅𝑁𝜎𝑎𝑣 
(3) 

The exponents 𝜒, 𝜒1 , 𝜒
′, 𝜒 ′

1 can then be obtained using Eqs. (2) and ( 3 ), 

along with the Walton relation 𝑁 𝑖 ∼ 𝑁 

𝑖 
1 , as well as specific assumptions 

for the scaling of 𝜎i and 𝜎av as a function of island-density N as discussed 

in more detail below. 

2.1. Case 𝜇 > 𝜇c 

In this case by assuming that the average capture number 𝜎av is pro- 

portional to a power of the average cluster size, along with scaling argu- 

ments it was found [23] that 𝜎𝑎𝑣 ( 𝜙; 𝑁) ∼ 𝑁 

− 𝛿∕ 𝑑 𝑓 and 𝜎𝑎𝑣 ( 𝜃; 𝑁) ∼ 𝑁 

− 𝛿∕ 𝑑 

where the exponent 𝛿 satisfies, 

𝛿 = 𝑑 − 2∕ 𝜇 (4) 

for finite island fractal dimension d f or for point-islands with d ≤ 2. 

This implies the existence of a critical value of 𝜇 ( 𝜇𝑐 = 2∕ 𝑑) such that 

for 𝜇 = 𝜇𝑐 one has 𝛿 = 0 and the standard RE theory (corresponding to 

ordinary diffusion in 𝑑 = 2 ) applies, while for 𝜇 > 𝜇c ( 𝜇 < 𝜇c ) one has 

𝛿 > 0 ( 𝛿 < 0) [27] . Using this result along with the Walton relation in 

Eqs. (2) and ( 3 ) leads to the following results [23] for 𝑖 = 𝑑 = 2 , 

𝜒 = 

4 𝜇
6 + 𝜇𝑑 𝑓 

, 𝜒1 = 

2 + 𝜇𝑑 𝑓 

6 + 𝜇𝑑 𝑓 
(5) 

𝜒 ′ = 

𝜇𝑑 𝑓 

3 + 𝜇(2 𝑑 𝑓 − 3) 
, 𝜒 ′

1 = 

1 + 𝜇( 𝑑 𝑓 − 1) 
3 + 𝜇(2 𝑑 𝑓 − 3) 

. (6) 

As expected, for the case of ramified islands with 𝑑 𝑓 = 2 for which the 

dose is equal to the coverage, one has 𝜒 = 𝜒 ′ and 𝜒1 = 𝜒 ′
1 . In particular, 

Eqs. (5) and (6) imply in this case that 𝜒 = 𝜒 ′ = 2 𝜇∕(3 + 𝜇) and 𝜒1 = 

𝜒 ′
1 = (1 + 𝜇)∕(3 + 𝜇) . In contrast, in the case of point islands ( 𝑑 𝑓 = ∞) 

the exponents 𝜒 and 𝜒1 are not well-defined since the coverage does 

not increase and the island-density does not saturate. In this case, one 

has 𝜒 ′ = 𝜒 ′
1 = 1∕2 in good agreement with the standard RE prediction 

for 𝑖 = 2 corresponding to ordinary diffusion. 

2.2. Case 𝜇 < 𝜇c 

In this case it was assumed [23] , by analogy with the case of irre- 

versible growth with ordinary diffusion and 𝑑 = 1 [28] , that both 𝜎i and 

𝜎av scale in the same way, e.g. 𝜎𝑖 ( 𝜃; 𝑁) ∼ 𝜎𝑎𝑣 ( 𝜃; 𝑁) ∼ 𝑁 

− 𝛿′ . Such an as- 

sumption is also consistent with the fact that in our simulations with 

𝜇 < 1, which correspond to a continuous time random-walk (CTRW) 

[5] with a power-law distribution of waiting times 𝑃 ( 𝜏′) ∼ ( 𝐷 0 𝜏
′) −1− 𝜇

(see Section 3.1 ) the subdiffusive behavior is due to a “rescaling of the 

time ” which affects both small and large islands equally. In this case us- 

ing the REs ( 2 ) and ( 3 ) (but now with 𝑅 = 𝐷 0 ∕ 𝐹 ) along with the Walton 

relation 𝑁 𝑖 ∼ 𝑁 

𝑖 
1 leads to the general results, 

𝜒 = 

𝑖 

𝑖 (1 − 𝛿′) + 1 + 𝑑 𝑓 ∕ 𝑑 
; 𝜒1 = 1 − 𝜒(1 − 𝛿′) (7) 

𝜒 ′ = 

𝑖 

𝑖 (1 − 𝛿′) + 2 
; 𝜒 ′

1 = 1 − 𝜒 ′(1 − 𝛿′) (8) 
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