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A B S T R A C T

The shape transition of a one-layer thick strained island deposited on a semi-infinite substrate has been
theoretically investigated from an energy variation calculation. It is found that depending on the misfit
strain, the initially circular island may become unstable beyond a critical size and can evolve toward an
elliptical shape. As the surface of the island increases, another transition is expected to occur which consists
in the ellipse splitting into two identical circular islands of smaller size. A shape diagram is finally displayed
for the island as a function of the misfit strain and island surface and a scenario of nanostructure evolution
is discussed.

© 2017 Published by Elsevier B.V.

1. Introduction

The study of the size and morphological evolution of nanos-
tructures developed onto the surfaces of solids is a long-standing
problem in surface physics and materials science since their physical
and chemical properties depend on the arrangement of atoms [1–4].
In this way, it is now well admitted that the structure of quantum dot
patterns are strongly dependent on the coarsening which can in turn
modify the properties of the nanostructures and, as a consequence,
their applications in engineering fields [5]. Various strain relaxation
mechanisms can also modify the properties of the nanostructures.
Indeed, the misfit strain resulting from the lattice mismatch between
the substrate and the islands may be relaxed through the formation
of dislocations, alloying or shape modification. In particular, it has
been found that an initially strained square-like island can undergo
a shape transition beyond a critical size and can evolve toward a
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rectangular shape (or quantum wire) [6–8]. This shape transition has
been then characterized for vacancy islands in the presence of sur-
face stress anisotropy [9] or when the misfit strain is anisotropic [10]
and of different sign [11] along both in-plane directions [10,11]. The
effect of substrate curvature has been also investigated [12]. It has
been found for example that in the case of Ge islands deposited on
curved silicon-on-insulator substrates, the stress and composition
in the structure are modified as well as the alloying when the
kinetic effects are important. Likewise, it has been theoretically
demonstrated that the formation of islands on the top of an apex or
the bottom of a valley can be trigged by the substrate curvature (and
the strain relaxation) [13]. The case of island formation on a sawtooth
pattern has been also considered [14]. Likewise, the island shape
transition in Si(001) homoepitaxy has been investigated with the
help of a low-energy electron microscopy and the effect of intrinsic
surface stress anisotropy on the elliptical-to-football shape transition
has been characterized [15].

In this Paper, the shape evolution of an initially two-dimensional
circular island deposited onto the free surface of a semi-infinite sub-
strate and submitted to misfit strain has been theoretically studied.
The transitions from a circular to an elliptical shape and from the
elliptical to new circular shapes have been characterized as a func-
tion of the island surface and misfit strain.
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2. Modeling and discussion

An initially one-layer thick or two-dimensional (2D) island is con-
sidered on a semi-infinite substrate (see Fig. 1 for axes). The radius of
the circular island in Fig. 1 (a) is labeled R and the radii along major
and minor axes in Fig. 1 (b) are labeled a and b for the ellipse, respec-
tively. The transition from the circular to elliptical shape has been
studied, assuming the surface of the island is constant, i.e. pab = pR2.
In the hypothesis where for the one-layer thick island the misfit
strain is constant in the direction of the axis perpendicular to the free
surface [6], the elastic energy relaxation has been calculated using
the force monopole approximation with Green function formalism
of the isotropic and linear elasticity theory [6,7,16-18]. Considering
thus the following force monopole distribution along the perimeter
of the island F = Ee0a0n, where e0 is the misfit strain related to the
lattice mismatch between the island and the substrate, n the normal
of the island boundary and a0 the height of the one-layer island, the
relaxation elastic energy is given by [7–11]:

Eelas = − 1
2

∫ ∫
u(r1, F2(r2))F1(r1)dr1dr2, (1)

where r1 and r2 are the boundary coordinates, F1 and F2 are the force
evaluated at r1 and r2, respectively, and u(r1, F2(r2)) is the elastic dis-
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Introducing the elliptical coordinate system, Eq. (1) has been writ-
ten as:
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with F = Ee0a0, h0 = a0
R << 1 the cut-off angle, h1 and h2 two

angles characterizing the positions of the forces F1 and F2 of the dis-
tribution, respectively, E the Young modulus and m = 0.3 the Poisson
ratio of the island. It is underlined at this point that the integral
defined in Eq. (3) has been analytically determined in the following

to the leading order in h0. In order to characterize the first circular-
to-elliptical shape transition, the following ellipse parameter e has
been introduced:
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− e, (4)

with e << R. Developing thus the relaxation elastic energy given in
Eq. (3) to the fourth order in e and to the leading order in h0, it yields:
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with E0
el = (1 + m)e2

0a2
0E/p and the a1, a2 and a4 the cut-off lengths

defined as:
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The first term in the above expression of energy displayed in Eq. (5)
corresponds to the elastic energy of a circular island of radius R [8],
the second and third ones being related to the elliptical shape. In
order to characterize the stability of the island, a surface energy term
has also to be considered. Assuming that in the Stranski-Krastanov
growth regime, the film wets the substrate before the islands appear,
the surface energy term Es reduces to the step energy [6]. It yields:

Es = cP, (8)

with c the line energy assumed to be isotropic and P the island
perimeter defined as:

P = 2
∫ p

0

√(
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)2

+
(
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)2

dh, (9)

where the island perimeter is described by x = acosh, y = bsinh
in the elliptical coordinate system. Developing Eq. (9) to the fourth
order in e gives:

Es = 2pRc +
3pc
2R

e2 − 15pc
32R3

e4 + H(e5). (10)

Fig. 1. Schematic top view of strained islands grown on a semi-infinite substrate. (a) Circular shape of radius R. (b) Elliptical shape of radii a and b.



https://isiarticles.com/article/143169

