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HIGHLIGHTS

GRAPHICAL ABSTRACT

 The biosecurity problem for many re-
gions is one of prioritizing surveillance
sites.

* Bayesian Belief Networks (BBNs) link
five invasive species (NIS) dispersal
pathways.

* Dispersal by ocean current, flood
plume, land bridge, swimming, or hu-
man-mediated.

» We estimate the number of arrivals and
probability of establishment for 11 spe-
cies.

* We automated the computation of spe-
cies- and site-specific biosecurity BBNs.

Number of black rats (Rattus rattus) expected to arrive on islands within the Dampier Archipelago each year. The
Burrup Peninsula (red) is connected to the mainland via a causeway which crosses industrial salt evaporation
ponds. Travelling north-east, rats may swim or cross tidal land bridges. Rats may stowaway on recreational or in-
dustrial boats to outer islands.
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Around the globe, islands are the last refuge for many threatened and endemic species. Islands are frequently also
important sites for recreation, cultural activities, and industrial development, all of which facilitate the establish-
ment of invasive species. Surveillance is employed on islands to detect the establishment of invasive species after
their arrival, leading to decisions about follow-up actions. Unless surveillance is prioritised according to risk of
establishment of invasives, it may be infeasible to implement efficiently over large tracts of publicly accessible
land, especially in data-deficient areas. The key biosecurity problem for many regions is one of prioritizing
sites for surveillance activities and identifying invasive species most likely to disperse to, and establish, and pro-
liferate on those sites. We created a series of Bayesian Belief Networks (BBNs), linked by Java computing code and
the freely available GeNle application to automate the creation and computation of species- and site-specific
biosecurity BBNs. The BBNs require data on island attributes, recreational or industrial visitor load, infrastructure,
habitat availability, and animal behaviour and dispersal via swimming, flying, human movement, land bridges, or
flood plumes. We used this biosecurity BBN to estimate the risk of 11 invasive faunal species arriving and estab-
lishing on 600 islands along the Pilbara coastline, Western Australia. Sensitivity analyses were conducted to iden-
tify nodes within the BBNs that required refined data inputs. Propagule pressure was the node with the greatest
influence over the number of arrivals. Other nodes such as the number of visitors to islands and swimming
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capabilities of invasive animals greatly influenced the model results. Across the 11 species studied, our models
predicted one arrival per 300 visitors. The biosecurity BBN can be used to identify the islands at highest risk
from establishment of invasive species within any archipelago/s, and the invasive species most likely to establish

on each island.

Crown Copyright © 2017 Published by Elsevier B.V. All rights reserved.

1. Introduction

Invasive species are one of the leading causes of animal extinctions
globally (Clavero and Garcia-Berthou, 2005). The introduction of inva-
sive non-indigenous species (NIS) to natural environments can af-
fect the structure and function of established ecosystems.
Ecological interactions between native and invasive species may
be direct (e.g., predation, herbivory, parasitism, competition, mu-
tualism) or indirect (e.g., habitat alteration and nutrient cycles,
cascading trophic interactions) and result in severely disrupted
ecosystem dynamics (Ives and Carpenter, 2007; Sakai et al.,
2001). While the small size and relative isolation of islands buffer
them from global NIS transport (Cope et al., 2016), islands remain
particularly prone to NIS because their low diversity of native
species compared with continents means that they are poorly
protected by biotic barriers to naturalization and invasion (Mack
and Lonsdale, 2002).

Quarantine and surveillance are two tools employed to restrict the
spread of invasive species to islands. Quarantine programs aim to re-
duce the risk of NIS arriving on islands and typically focus on the most
likely source populations of NIS or dispersal pathway (Cope et al.,
2016; Faulkner et al., 2017). Quarantine programs are difficult to imple-
ment on publicly accessible natural lands because, as the number of
source populations and dispersal pathways available to NIS increases,
so too does the area to be searched and treated, which quickly makes
quarantine cost-prohibitive. Domestic quarantine programs tend to
rely heavily on education and outreach to raise awareness among the
users of natural lands of the potential to spread NIS (Boser et al.,
2014). Surveillance programs, on the other hand, aim to find NIS after
their arrival but before their populations become large and potentially
uncontrollable, and hence are designed to search high-risk areas more
often (Moore et al., 2010; Whittle et al., 2013).

The key biosecurity problem for most islands is one of prioritizing
islands for surveillance activities and identifying NIS most likely to dis-
perse to, establish, and proliferate on islands. Biosecurity risk assess-
ments frequently appear in the form of ranked lists of species that
identify the greatest threats for an area (Gordon et al., 2011; Lohr et
al., 2015; Pheloung et al.,, 1999). Many risk assessments, however, are
built on limited data, and a limited number of poorly defined species,
characteristics, or measures related to NIS dispersal (Dahlstrom et al.,
2011). Pest risk maps are a recommended tool for identifying high risk
NIS and surveillance sites (Venette et al., 2010) because modern compu-
tational power allows analysts to combine complex models with spatial
data sets to produce refined risk-assessment results (Koch et al., 2013).
Unfortunately, these pest risk maps are frequently not designed to be
used in data-deficient areas, on poorly studied NIS, or by land managers.
Many of these maps are also generated for entire continents, and hence
produce results at a resolution that is uninformative for site-specific sur-
veillance programs. Additionally, classical two-dimensional spatial
spread models usually depict the spread of invasive species as a diffu-
sion across the landscape, which has limited applicability to long-dis-
tance dispersal events which are better depicted by networking
models (Koch et al., 2013), especially across a hostile matrix. These de-
ficiencies may explain some of the failures to implement risk assess-
ments (Dahlstrom et al,, 2011).

In this manuscript we describe a new pest risk mapping system built
using a series of generic Bayesian Belief Networks (BBNs), which are

linked by Java computing code and the freely available GeNle applica-
tion to automate the creation and computation of species- and site-
specific biosecurity BBNs. The BBNs have been designed to produce
high-resolution estimates of biosecurity risk. Specifically, the models es-
timate for each island, the number of individuals of multiple species ar-
riving, the number of individuals using each dispersal pathway, and the
annual risk of NIS establishment for each species, despite uncertainty in
data inputs. We have used this biosecurity BBN to estimate the risk of 11
invasive faunal species arriving via five dispersal pathways and estab-
lishing on 600 islands along the Pilbara coastline, Western Australia.
We hypothesised that common household pests (Rattus rattus and
Mus musculus) would be the most likely NIS to disperse to islands, and
that recreational boats would be greatest contributor to NIS dispersal
because most long-distance introductions of NIS to new areas are the di-
rect or indirect result of human activities (Sakai et al., 2001; Clout and
Veitch, 2002). Industry is subject to far stricter quarantine protocols
than recreational island users. The automation of the creation of high-
resolution biosecurity risk estimates using relatively little data to de-
scribe surveillance sites and NIS of interest means our BBN code is flex-
ible and applicable to any archipelago globally.

2. Material and methods
2.1. Study area

In the Pilbara region of Western Australia there are 601 islands spread
out over 30,000 km? of ocean with an approximate total land area of
500 km? (Fig. 1).The isolation of the Pilbara islands, with only 45,000
people (ABS Stat, 2015) living along 740 km of Pilbara coast, makes
them good refuges for threatened and endemic species including mala
(Lagorchestes hirsutus) translocated from the mainland, Shark Bay
mouse (Pseudomys fieldi), translocated from Shark Bay islands,
Rothschild's rock-wallaby (Petrogale rothschildi), Northern quoll
(Dasyurus hallucatus), four species of nesting turtles and numerous sea-
birds species. Even with their isolation, however, the islands are poor can-
didates for protection through quarantine. Twenty-two (3.6%) of these
islands have some form of industrial activity or marine navigational
equipment and are subject to quarantine programs. A large number of
other islands are used for recreational activity with little or no biosecurity
programs. Approximately one in ten people in the Pilbara own a boat
(ABS Stat, 2015; Department of Transport, 2014), any of which may be
launched from one of four marinas or numerous small boat ramps along
the coast. The remoteness of the islands and their sheer number mean
that data on biotic and abiotic characteristics and patterns of human use
are scarce (Lohr et al., 2015).

We used BBNs to estimate the probability of 11 faunal NIS arriving
and establishing on each island: cow Bos taurus, dog Canis familiaris, pi-
geon Columba livia, horse Equus caballus, cat Felis catus, Asian house
gecko Hemidactylus frenatus, mouse Mus musculus, rabbit Oryctolagus
cuniculus, black rat Rattus rattus, cane toad Rhinella marina, and red
fox Vulpes vulpes. These NIS species are already present on Pilbara
islands or are present on the nearby mainland and were identified by
experts as having the potential to disperse to islands. Five dispersal
pathways were identified by experienced island managers for this
suite of species: swimming or flying; crossing temporary tidal land brid-
ges; rafting on flooded river plumes; and human-facilitated dispersal
via recreational visitors or industrial workers.
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