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A B S T R A C T

On the example of a few sets of sampling directions in the Brillouin zone, this work shows how important the
choice of the cubic harmonics is on the quality of approximation of some quantities by a series of such harmonics.
These studies led to the following questions: (1) In the case that for a given l there are several independent
harmonics, can one use in the expansion only one harmonic with a given l?; (2) How should harmonics be or-
dered: according to l or, after writing them in terms of (x4 þ y4 þ z4)n (x2y2z2)m, according to their degree
q¼ n þ m? To enable practical applications of such harmonics, they are constructed in terms of the associated
Legendre polynomials up to l¼ 26. It is shown that electron momentum densities, reconstructed from experi-
mental data for ErGa3 and InGa3, are described much better by harmonics ordered with q.

1. Introduction

In solids, having a periodic lattice, some quantities as electronic
densities, Fermi surfaces, effective masses, and associated quantities
(e.g., Compton scattering spectra) are invariant under transformations of
the point group of the crystal. This property is expressed by their
expansion into a series of lattice harmonics, Hl,ν(θ,φ), of a given
symmetry

f ðpÞ ¼
X
1;ν

f1;νðpÞH1;νðΘ;φÞ (1)

where the index ν distinguishes harmonics of the same order l. In turn
(Θ,φ) are the azimuthal and polar angles, respectively, of the direction p
with respect to the lattice coordinate system, and fl,ν(p) are the radial
coefficients of the function f(p).

Because of the orthogonality of harmonics, coefficients fl,ν(p) are
expressed by the integrals as follows:

fl;νðpÞ ¼ ∫
Ω

f ðp;Θ;φÞHl;νðΘ;φÞsinðΘÞdΘdφ (2)

However, when values of f(p) are known only along some limited
number (N) of sampling directions (Θi, φi), either one cannot perform the
exact integration in Eq. (2) or it is difficult, particularly in the case of
cubic harmonics (CHs). In such a case, by assuming that series (1) con-
verges and truncating it at a certain term, one can consider a set of
algebraic linear equations with N unknown functions f al;νðpÞ (superscript
“a” emphasizes that each truncation leads to an approximate value). Two

ways of determining f al;νðpÞ are described in detail in Ref. [1] – they are the
Houston method [2] (commonly used) and the method based on the
orthogonality relation (2). The smallest truncation error in calculating
f al;νðpÞ provides the application of special directions (SDs) – such sampling
directions, which take into account the replacement of integral (2) by a
finite sum, require the use of the Gaussian quadratures. SDs were pro-
posed for the first time by Bansil [3].

The expansion into lattice harmonics, which simplifies many theo-
retical calculations [4–10], allows also for providing analytical solutions
to some inverse problems. They occur in, for example, medical tomog-
raphy [11,12], determinations of the Fermi surface from de Haas van
Alphen effect [13–16], or reconstructions of electron densities from the
Compton scattering, and angular correlations of annihilation radiations
(ACARs) spectra [17–23], when applying transform methods [11]
(analytical inversion of the Radon transform [24]). The exception is the
direct Fourier transform method, in which one can follow two different
approaches: either an expansion into a harmonics series or some inter-
polation [25]. Series expansions method, known as algebraic recon-
struction techniques [26–30], needs to use neither Eq. (1) nor SDs.

Lattice harmonics are linear combinations of the spherical harmonics
Yl,m, which are solutions of the angular momentum operator. Therefore,
it is common practice that they are ordered with respect to l [13].
However, due to constructing SDs [31], Fehlner and Vosko [32] proposed
CHs, denoted later as Kl,q, which are not ordered by l but by q. Do such
harmonics describe the reality? On the example of “experimental” elec-
tron densities for ErGa3 and InGa3, it is demonstrated that for these
materials such harmonics seem to be the best.
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To study expansion (1), one should apply sampling directions. In this
work, a few sets were chosen among 6 and 10 directions for the following
reasons: (1) for 6 SDs, using Kl,q, one could determine a better set than the
set given by Fehlner et al. [31]; (2) Kl,q describes very particular sampling
directions, measured by Hiraoka and co-workers [33], incomparably
better than commonly used harmonics [13], which lead to nonsensical
results, even for the isotropic component; (3) for n¼ 6 and 10 (also for
n¼ 15 and 21), harmonics Kl,q allow to estimate almost perfect SDs.

2. Construction of special directions and cubic harmonics

For structures with the unique R-fold axes (tetragonal, trigonal, or hcp
lattices), lattice harmonics have very simple form in terms of associated
Legendre polynomials: either Pl (cosΘ) or Pljmj(cosΘ)cos (mφ). Cubic
structures (with three fourfold axes) have quite different lattice har-
monics that are a linear combination of such polynomials.

Mueller and Priestley gave explicit forms of 27 CHs up to l¼ 30
(Table 1 in Ref. [13]), which were verified in our previous study [34].
The characteristic of these CHs, denoted later as Fl,ν, is that the harmonics
with ν¼ 1 contain both polynomials Pl (cosΘ) and Pljmj(cosΘ)cos (mφ)

Fl;1 ¼ cl;1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

4π

r
Plðcos θÞ

þ
X
m

cl;m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þðl� jmjÞ!

2πðlþ jmjÞ!

s
Pjmj
l ðcos θÞcosðmφÞ (3)

By contrast, harmonics with ν> 1 do not contain Pl (cosΘ). Moreover,
if for a given l there are three CHs, Fl,2 does not also contain Plj4j(cosΘ)cos
(4φ). In Eq. (3) m¼ 0, 4, 8, …, � l and cl,m denotes normalization con-
stants. The most efficient way of calculating the Legendre polynomials is
to use their recurrence relations.

When for a given l there is only one harmonic, which in the case of
CHs takes place for l¼ 0, 4, 6, 8, 10, and 14, CHs are determined
unambiguously. Otherwise, one could define them in different ways by
taking their suitable linear combinations – of course, to have always the
same number of independent harmonics. However, there are still har-
monics ordered by l.

To construct N-SDs the ideal situation is when lines of zeros of a few
first harmonics, at least two first, which are omitted in expansion (1),
intersect in N points. For CHs [13] this occurs only in the case of 1- and
3-SDs. This is a reason that Fehlner and co-workers [32] and next Prasad
and Bansil [6,35] expressed CHs in terms of the functions
Q¼ x4 þ y4 þ z4 and S¼ x2y2z2 (in the Cartesian coordinates), searching

the simultaneous N zeros of appropriate polynomials in the Q–S space
(two polynomials forN� 10 and three for higherN). For such harmonics,
roots of Kl,qwith the same degree q intersect inM¼ 0.5q (qþ1) points. An
index q in Kl,q denotes that Kl,q is a polynomial of degree q¼ n þ m of a
product QnSm.

Fehlner and Vosko (Table 2 in Ref. [32]) wrote expressions for ten
harmonics (Kl,q). However, because there is some error in the 10th har-
monic K18,3, they did it only for nine harmonics (i.e., up to K16,3).
Therefore, in this paper they are calculated, finding the relationships
between Kl,q and Fl,ν. When for a given l there are two harmonics, they are
the following:

Kl,q¼ c1Fl,1 – c2Fl,2 and Kl,qþ1¼ c2Fl,1 þ c1Fl,2

where c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c21

q
and c1¼ 0.335132 (l¼ 12); c1¼ 0.442923 (l¼ 16);

c1¼ 0.377803 (l¼ 18); c1¼ 0.508312 (l¼ 20); c1¼ 0.512705 (l¼ 22);
c1¼ 0.590961 (l¼ 26).

For l¼ 24, there are three harmonics: K24,4¼ 0.20301F24,1–
0.38417F24,2 þ 0.90067F24,3; K24,5¼ 0.5155F24,1–0.7401F24,2–
0.43187F24,3 and K24,6¼ 0.8325F24,1 þ 0.55196F24,2 þ 0.04779F24,3

Based on Table 1 in Ref. [13] and the aforementioned relationships,
one can obtain Kl,q in terms of the associated Legendre polynomials. For
harmonics Kl,q, it is characteristic that all of them contain both Pl (cosΘ)
and Pljmj(cosΘ)cos (mφ), as given in Eq. (3). However, when for a given l
there is more than one harmonic, Kl,q with the lowest q does not contain
Pljmj(cosΘ)cos (mφ) with the highest m – some examples are presented in
Table 1. Table 2 illustrates their order of occurrence in expansion (1).

In the next subsections, how to use some sets of SDs when either
harmonics Fl,ν [13] or Kl,q [32] are applied is demonstrated. Weights of
all components f al;νðpÞ were determined both by the Houston method and

Table 1
The coefficients cl,m for harmonics Fl,ν and Kl,q given in terms of the associated Legendre
polynomials as in Eq. (3).

l,ν m¼ 0 m¼ 4 m¼ 8 m¼ 12 m¼ 16
16,1 0.68136 0.27587 0.29049 0.32757 0.51765
16,2 0 0.63705 �0.32999 �0.64798 0.25573
18,1 0.45792 �0.38646 �0.40209 �0.43747 �0.53657
18,2 0 0.14873 �0.63775 0.72334 �0.21895

l,q m¼ 0 m¼ 4 m¼ 8 m¼ 12 m¼ 16
16,3 0.30179 �0.44896 0.42452 0.726042 0
16,4 0.61088 0.52950 0.11428 0.00668 0.57737
18,3 0.17300 �0.28370 0.43858 �0.83501 0
18,4 0.42398 �0.30163 �0.61323 �0.13177 �0.57952

Table 2
The order of occurrence in expansion (1) of CHs: Fl,ν [13] and Kl,d [32].

no.→ 6 7 8 9 10 11 12 13 14 15 16
l,ν → 12,1 12,2 14,1 16,1 16,2 18,1 18,2 20,1 20,2 22,1 22,2
l,q → 12,2 12,3 14,3 16,3 18,3 16,4 18,4 20,4 22,4 24,4 20,5

no.→ 17 18 19 20 21 22 23 24 25 26 27
l,ν → 24,1 24,2 24,3 26,1 26,2 28,1 28,2 28,3 30,1 30,2 30,3
l,q → 22,5 24,5 26,5 28,5 30,5 24,6 26,6 28,6 30,6 28,7 30,7

Fig. 1. Loci of zeros of harmonics F12,1, F12,2, and F14,1 and four sets of 6-SDs,
drawn in the irreducible part of the Brillouin zone with the high symmetry
directions in the corners. Three sets are designated by the common roots (or
are close to them) of two CHs: F12,2 & F14,1; F12,1 & F14,1; and K12,3 & K14,3.
The set marked by the full squares [31] based on the common roots of two
polynomials is the linear combination of harmonics K (see Table 4
in Ref. [32]).
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