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GENERALIZED BLOCH SPACES, INTEGRAL MEANS OF
HYPERBOLIC HARMONIC MAPPINGS IN THE UNIT BALL

JIAOLONG CHEN

Abstract. In this paper, we investigate the properties of hyperbolic harmonic
mappings in the unit ball Bn in R

n (n ≥ 2). Firstly, we establish necessary and
sufficient conditions for a hyperbolic harmonic mapping to be in the Bloch space
B(Bn) and the generalized Bloch space L∞,ωB0

α,a(B
n), respectively. Secondly,

we discuss the relationship between the integral means of hyperbolic harmonic
mappings and that of their gradients. The obtained results are the generalizations
of Hardy and Littlewood’s related ones in the setting of hyperbolic harmonic
mappings. Finally, we characterize the weak uniform boundedness property of
hyperbolic harmonic mappings in terms of the quasihyperbolic metric.

1. Introduction and main results

For n ≥ 2, let B
n(x0, r) = {x ∈ R

n : |x − x0| < r}, Sn−1(x0, r) = ∂Bn(x0, r)
and B

n
(x0, r) = B

n(x0, r) ∪ S
n−1(x0, r). In particular, we write B

n = B
n(0, 1),

S
n−1 = S

n−1(0, 1) and B
n
= B

n ∪ S
n−1.

The purpose of this paper is to consider the hyperbolic harmonic mappings whose
definition is as follows.

Definition 1.1. A mapping u = (u1, · · · , un) ∈ C2(Bn,Rn) is said to be hyperbolic
harmonic if

Δhu = (Δhu1, · · · ,Δhun) = 0,

that is, for each j ∈ {1, · · · , n}, uj satisfies the hyperbolic Laplace equation

Δhuj = 0,

where

(1.1) Δhuj(x) = (1− |x|2)2Δuj(x) + 2(n− 2)(1− |x|2)
n∑

i=1

xi
∂uj

∂xi

(x).

We refer to [4, 15, 19, 32, 40, 41, 42] for basic properties of this class of mappings.
For convenience, in the following of this paper, we always use the notation Δhu = 0
to mean that u = (u1, · · · , un) is hyperbolic harmonic in B

n.
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