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We present a theory of ultradistributional boundary values for harmonic functions 
defined on the Euclidean unit ball. We also give a characterization of ultradiffer-
entiable functions and ultradistributions on the sphere in terms of their spherical 
harmonic expansions. To this end, we obtain explicit estimates for partial deriva-
tives of spherical harmonics, which are of independent interest and refine earlier 
estimates by Calderón and Zygmund. We apply our results to characterize the sup-
port of ultradistributions on the sphere via Abel summability of their spherical 
harmonic expansions.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The study of boundary values of harmonic and analytic functions is a classical and important subject 
in distribution and ultradistribution theory. There is a vast literature dealing with boundary values on Rn, 
see e.g. [1,5,6,10,12,14,20] and references therein. In the case of the unit sphere Sn−1, the characterization 
of harmonic functions in the Euclidean unit ball of Rn having distributional boundary values on Sn−1 was 
given by Estrada and Kanwal in [11]. In a recent article [13], González Vieli has used the Poisson transform 
to obtain a very useful description of the support of a Schwartz distribution on the sphere (cf. [27] for 
support characterizations on Rn). Representations of analytic functionals on the sphere [17] as initial values 
of solutions to the heat equation were studied by Morimoto and Suwa [18].

In this article we generalize the results from [11] to the framework of ultradistributions [15,16] and supply 
a theory of ultradistributional boundary values of harmonic functions on Sn−1. Our goal is to characterize 
all those harmonic functions U , defined in the unit ball, that admit boundary values limr→1− U(rω) in an 
ultradistribution space E∗′(Sn−1). Our considerations apply to both non-quasianalytic and quasianalytic 

✩ The authors gratefully acknowledge support by Ghent University, through the BOF-grant 01N01014.
* Corresponding author.

E-mail addresses: dorde.vuckovic@UGent.be (Ð. Vučković), jasson.vindas@UGent.be (J. Vindas).

http://dx.doi.org/10.1016/j.jmaa.2017.08.035
0022-247X/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmaa.2017.08.035
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:dorde.vuckovic@UGent.be
mailto:jasson.vindas@UGent.be
http://dx.doi.org/10.1016/j.jmaa.2017.08.035
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2017.08.035&domain=pdf


534 Ð. Vučković, J. Vindas / J. Math. Anal. Appl. 457 (2018) 533–550

ultradistributions, and, in particular, to analytic functionals. As an application, we also obtain a character-
ization of the support of a non-quasianalytic ultradistribution in terms of Abel summability of its spherical 
harmonic series expansion. Since Schwartz distributions are naturally embedded into the spaces of ultra-
distributions in a support preserving fashion, our support characterization contains as a particular instance 
that of González Vieli quoted above.

In Section 4 we study spaces of ultradifferentiable functions and ultradistributions through spherical 
harmonics. Our main results there are descriptions of these spaces in terms of the decay or growth rate of 
the norms of the projections of a function or an ultradistribution onto the spaces of spherical harmonics. 
We also establish the convergence of the spherical harmonic series in the corresponding space. Note that 
eigenfunction expansions of ultradistributions on compact analytic manifolds have recently been investigated 
in [8,9] with the aid of pseudodifferential calculus (cf. [28] for the Euclidean global setting). However, our 
approach here is quite different and is rather based on explicit estimates for partial derivatives of solid 
harmonics and spherical harmonics that are obtained in Section 3. Such estimates are of independent 
interest and refine earlier bounds by Calderón and Zygmund from [4].

Harmonic functions with ultradistributional boundary values are characterized in Section 5. The charac-
terization is in terms of the growth order of the harmonic function near the boundary Sn−1; we also show in 
Section 5 that a harmonic function satisfying such growth conditions must necessarily be the Poisson trans-
form of an ultradistribution. In the special case of analytic functionals, our result yields as a corollary: any
harmonic function on the unit ball arises as the Poisson transform of some analytic functional on the sphere. 
Finally, Section 6 deals with the characterization of the support of non-quasianalytic ultradistributions on 
S
n−1.

2. Preliminaries

We employ the notation Bn for the open unit ball of Rn. We work in dimension n ≥ 2.

2.1. Spherical harmonics

The theory of spherical harmonics is a classical subject in analysis and it is very well explained in 
several textbooks (see e.g. [2,3]). The space of solid harmonics of degree j will be denoted by Hj(Rn), its 
elements are the harmonic homogeneous polynomials of degree j on Rn. A spherical harmonic of degree j
is the restriction to Sn−1 of a solid harmonic of degree j and we write Hj(Sn−1) for space of all spherical 
harmonics of degree j. Its dimension, denoted as dj = dimHj(Sn−1), is (cf. [3] or [26, Thm. 2, p. 117])

dj = (2j + n− 2)(n + j − 3)!
j!(n− 2)! ∼ 2jn−2

(n− 2)! .

From this exact formula, it is not hard to see that dj satisfies the bounds

2
(n− 2)!j

n−2 < dj ≤ njn−2, for all j ≥ 1. (2.1)

It is well known [3] that

L2(Sn−1) =
∞⊕
j=0

Hj(Sn−1),

where the L2-inner product is taken with respect to the surface measure of Sn−1. The orthogonal projection 
of f ∈ L2(Sn−1) onto Hj(Sn−1) will always be denoted as fj ; it is explicitly given by
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