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a  b  s  t  r  a  c  t

In this  paper,  nonlinear  propagation  of the  intense  ultra  short  pulses  through  under  dense
plasmas  are investigated  analytically.  Using  paraxial  theory,  the  beam  width  parameter  is
evaluated  as  a function  of  the  propagation  distance.  The  effect  of  the  inertial  ponderomotive
force,  �m(�u · �∇) �u, on  intensity  of  the  second  harmonic  pulse  and  self  focusing  of  laser  pulse
are  considered.  It is shown  that  the  second  harmonic  amplitude  depends  on the  propagation
distance  periodically.  It  is  shown  that  the  inertial  ponderomotive  force  affects  efficiency  of
the second  harmonic  generation,  but it does  not  affect  beam  width  parameter  of  the  second
harmonic  wave.

©  2018  Published  by Elsevier  GmbH.

1. Introduction

Recently, there has been much interest in the interaction of high intensity ultra short laser pulses with plasma. There
has been considerable interest in the interaction of intense laser beam with plasmas on account of its relevance to laser
fusion and charged particle acceleration [1]. With the availability of high power laser beams, a large number of interesting
nonlinear phenomena have been studied theoretically and experimentally. The self-focusing feature of powerful laser beams
in dielectrics, semiconductors and plasmas are phenomena which have been extensively investigated in the recent years
and this is primarily due to the dependence of complex dielectric constant on the intensity of propagation wave [2].

Many mechanisms can generate laser harmonics in plasma. In the case of the second harmonic generation, the main
mechanism is the presence of density gradients in the plasma. Matsumoto [3] has presented both static and dynamic analysis
of quasi-phase matched second harmonic generation by backward propagation interaction, where the second harmonic wave
is generated in reflection. Malka et al. [4] have observed 0.1% conversion efficiency of the second harmonic generation of
a laser in plasma created by optical field ionization. New short pulse laser technology has made possible the production of
extremely intense laser sources at a multi-terawatt level. The focused intensities are obtained very high ≈ 1018 W/cm2 and
further developments are aimed at intensities exceeding ≈ 1021 W/cm2 [5,6].

Salih et al. [7] have investigated the second harmonic generation of an intense self-guided right circularly polarized laser
beam in the magnetized plasma. The efficiency of the second harmonic yield increases nonlinearly with the intensity of the
fundamental laser due to the dependence of the spot size on it. Moreover, it enhances the efficiency of the second harmonic
generation to higher levels due to electron cyclotron resonance. An intense Gaussian laser beam propagating through a
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preformed plasma channel gets self-focused due to radial ponderomotive forces on electrons and the subsequent plasma
redistribution [8,9]. The ponderomotive force acting on electron consists of two  forces: the inertial ponderomotive force,
�m(�u · �∇) �u,  and Lorentz ponderomotive force, �q(�u× �B).

Wani et al. [10] have studied nonlinear propagation of Guassian laser beam in an inhomogeneous plasma under plasma
density ramp. Gupta et al. [11] have studied effect of cross-focusing of two  q-Guassian laser beam on excitation of electron
plasma wave in collisional plasma. Mitigation of stimulated Raman backscattering by elliptical laser beam in collisionless
plasma is considered [12]. Self-focusing of Hermite-cosh-Gaussian laser beam in semiconductor quantum plasma have been
considered by Wani et al. [13]. Ouahid et al. [14] have considered Relativistic self-focusing of finite Airy-Gaussian beams in
collisionless plasma using the Wentzel-Kramers-Brillouin approximation.

Askari et al. [15] have considered the effects of inertial pondromotive force and wiggler magnetic field on the efficiency
of the second harmonic generation by neglecting the effect of self-focusing of the fundamental pulse. Furthermore, Askari
et al. [16,17] have considered phase matching condition in the second harmonic and sum frequency generation.

The second harmonic generation is considered in an underdense plasma and in the presence of wiggler magnetic field
by two causes. First, interaction of an ultra-short laser pulse with nonmagnetic isotropic plasma produces many nonlinear
phenomena such as generation of odd harmonics. In the presence of a magnetic field, an isotropic plasma is converted to
a non-isotropic plasma and leads to production of even harmonics. Second, the wave vector �k0 of wiggler magnetic field
acts as a virtual photon of quantum energy 0 and momentum ��k0 so that establish the conservation of the momentum. The
conservation of the momentum satisfy the Gaussian phase matching condition, which is an important character to obtain a
large output.

In this paper, the effect of inertial ponderomotive force �m(�u · �∇) �u on efficiency of the second harmonic generation in
presence of wiggler magnetic field are considered by assuming the existence of self-focusing of the fundamental pulse and
satisfying phase matching.

2. Theory

The continuity equations of electron number density and the average velocity, and the electromagnetic wave equation
in cold plasma are given by following relations [18,19]
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Where �J = −n e �u, �B, �E,  c, �, �u, n, m and eare current density, magnetic and electric fields, the velocity of light in vacuum,
electron collision frequency of plasma, average velocity, number density, mass and charge of electron, respectively. Also in
Eq. (2), term (�u · �∇) �u is called inertial force and collision term, � �u,  is ignored in a plasma with weak collision.

Assume a plasma with uniform density n◦ in the presence of the following wiggler magnetic field

�̂B = B◦Weik◦zêy, (4)

where B◦W and k◦ are amplitude and wave number of the background wiggler magnetic field. The symbol “∧” over quantities
denotes their complex representation. Consider an intense and short laser pulse with frequencyω, the wave number k1 in
plasma, polarization in the x-direction and propagating through the plasma along the positive z-axis.
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1)/2. Under this circumstance, it is better to solve Eqs. of (1)–(3) by means of perturbation
expansion. For this purpose, quantities are shown as
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