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a b s t r a c t

We separate the Kerr-like behaviour of the second-harmonic generation in the far-off resonant regime from
the oscillations caused by the time-dependence of the interaction energy. To this purpose, we consider
the approximation obtained from the exact dynamics by the method of small rotations. The Floquet-type
decomposition of the approximate dynamics comprises the Kerr-like dynamics and oscillations of the same order
of magnitude as those assumed for the exact dynamics of the second-harmonic generation. We have found that
a superposition of two states of concentrated quantum phase arises in the fundamental mode in the second-
harmonic generation in the far-off resonant limit at a later time than a superposition of two coherent states in
the corresponding Kerr medium and the difference is larger for higher initial coherent amplitudes.

The quantum phase fluctuation is higher for the same initial coherent amplitudes in the fundamental mode
in the second-harmonic generation in the far-off resonant limit than in the corresponding Kerr medium and the
difference is larger for higher initial coherent amplitudes.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The second- and third-order nonlinear media were studied not only
in nonlinear, but also in quantum optics. The refractive index of the
third-order nonlinear medium can depend on the intensity of light. This
dependence is known as the optical Kerr effect and such a medium is
called a Kerr medium. In quantum optics, the squeezing of light was
investigated first [1–3]. Later, the attention was paid to the superposi-
tion states of the light modes [4,5]. The third-order nonlinear isotropic
medium is called also a Kerr medium. The light mode in the Kerr
medium is modelled as an anharmonic oscillator. The initial coherent
state of this oscillator evolves into a generalized coherent state. The
conditions on which the generalized coherent state is a superposition of
coherent states were studied theoretically [6].

The superposition states are of fundamental interest [7,8] and, to the
different methods for generating such states, including superpositions of
squeezed states, the Kerr nonlinearities belong [9].

From the viewpoint of nonlinear and applied optics it is important
that the cascaded second-order effects (second-harmonic generations)
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behave as a third-order nonlinear process [10–12]. In quantum optics a
Kerr-like behaviour has been derived from the solution of the description
of second-harmonic generation in the case of mismatch up to the second
order in the propagation distance [13,14]. Equivalently, the derivation
can proceed up to the second order in the coupling constant [15,16].

A driven mode in the Kerr medium or in the medium with effectively
Kerr behaviour has interesting properties. The one-photon blockade
has been invented [17] and the subsequent investigation of the finite-
dimensional states engineering has been successful [18]. Also the no-
tions of two- and three-photon blockades are useful [19].

The outline of the paper is as follows. In Section 2, we present a
formal derivation of the Kerr-like behaviour of the second-harmonic
generation in the far-off resonant regime. In Section 3, we mention the
invariant-subspace method. In Section 4, using numerical results, we
illustrate the Kerr-like behaviour of various characteristics of the second-
harmonic generation and deviations from this behaviour. Especially, we
deal with the fidelity between the fundamental mode and the light in
the Kerr medium. In Section 5, we conclude.
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2. Kerr-like behaviour of second harmonic generation

The second harmonic generation is usually described on the condi-
tion of perfect resonance [20], but without this assumption [16], we
must use the following model Hamiltonian (in units ℏ = 1)

𝐻̂ = 𝐻̂0 + 𝐻̂int (1)

=
2
∑

𝑗=1
𝜔𝑗 𝑎̂

†
𝑗 𝑎̂𝑗 + 𝑔𝑎̂

2
1𝑎̂

†
2 + 𝑔

∗𝑎̂†21 𝑎̂2, (2)

where 𝑎̂1 (𝑎̂†1) and 𝑎̂2 (𝑎̂†2) are annihilation (creation) operators of the
fundamental mode of frequency 𝜔1 and of the second harmonic mode
of frequency 𝜔2, respectively. It holds that 𝜔2 = 2𝜔1 on resonance. The
constant 𝑔 describes coupling between both modes.

In the Schrödinger picture, the modal operators do not change, 𝑎̂𝑗 =
𝑎̂𝑗 (0), 𝑗 = 1, 2, but the state vector |𝜓(𝑡)⟩ evolves. On the replacement
exp(𝑖𝐻̂0𝑡)|𝜓(𝑡)⟩ → |𝜓(𝑡)⟩, we obtain the interaction picture without
introducing new notation. The evolution of the state vector |𝜓(𝑡)⟩ in
the interaction representation can be described by the equation

𝑑
𝑑𝑡

|𝜓(𝑡)⟩ = −𝑖̂int (𝑡)|𝜓(𝑡)⟩, (3)

where

̂int (𝑡) = 𝑒𝑖𝐻̂0𝑡𝐻̂int𝑒
−𝑖𝐻̂0𝑡 (4)

= 𝑔𝑎̂21𝑎̂
†
2 exp(𝑖Δ𝜔𝑡) + 𝑔

∗𝑎̂†21 𝑎̂2 exp(−𝑖Δ𝜔𝑡), (5)

with Δ𝜔 = 𝜔2 − 2𝜔1 being detuning. Eq. (3) has the solution

|𝜓(𝑡)⟩ = 𝑈̂int (𝑡)|𝜓(0)⟩, (6)

where 𝑈̂int (𝑡) is the solution of the initial-value problem

𝑑
𝑑𝑡
𝑈̂int (𝑡) = −𝑖̂int (𝑡)𝑈̂int (𝑡), 𝑈̂int (0) = 1̂. (7)

To solve the problem (7), we make a suitable substitution and obtain

𝑈̂int (𝑡) = 𝑈̂pri(𝑡)𝑈̂nonpri(𝑡), (8)

where

𝑈̂pri(𝑡) = 𝑒𝑖Δ𝜔𝑡𝑎̂
†
2 𝑎̂2 , 𝑈̂nonpri(𝑡) = 𝑒−𝑖𝑡𝐻̂red , (9)

with

𝐻̂red = Δ𝜔𝑎̂†2𝑎̂2 + 𝐻̂int , (10)

where red means reduced. Eq. (3) has 2𝜋
Δ𝜔 -periodic coefficients in the

number-state basis and, therefore, the Floquet theory [21] can be
applied. In relation (8), the subscript pri means a 2𝜋

Δ𝜔 -periodic factor and
the subscript nonpri means an aperiodic factor. This decomposition does
not seem to have another physical meaning besides the exact solution
of the problem (7).

Using the formalism in [16], we derive an approximate evolution
operator in the interaction picture, ̂̄𝑈 int (𝑡) ≈ 𝑈̂int (𝑡),

̂̄𝑈 int (𝑡) = 𝑒𝑖Δ𝜔𝑡𝑎̂
†
2 𝑎̂2 𝑈̂†

× 𝑒−𝑖Δ𝜔𝑡𝑎̂
†
2 𝑎̂2−𝑖𝑡

|𝑔|2
Δ𝜔 [𝑋̂+ ,𝑋̂−]𝑈̂ , (11)

where

𝑋̂+ = 𝑎̂21𝑎̂
†
2, 𝑋̂− = 𝑎̂†21 𝑎̂2,

𝑈̂ = exp
[ 1
Δ𝜔

(𝑔𝑋̂+ − 𝑔∗𝑋̂−)
]

. (12)

Let us recall that

[𝑋̂+, 𝑋̂−] = 4𝑛̂1𝑛̂2 + 2𝑛̂2 − 𝑛̂21 + 𝑛̂1, (13)

where 𝑛̂𝑗 = 𝑎̂†𝑗 𝑎̂𝑗 , 𝑗 = 1, 2. We introduce also an approximate evolution
operator ̂̄̄𝑈 int ≈ ̂̄𝑈 int (𝑡) ≈ 𝑈̂int (𝑡),
̂̄̄𝑈 int (𝑡) = 𝑒𝑖Δ𝜔𝑡𝑎̂

†
2 𝑎̂2 𝑈̂†

× 𝑒−𝑖Δ𝜔𝑡𝑎̂
†
2 𝑎̂2 𝑈̂𝑒−𝑖𝑡

|𝑔|2
Δ𝜔 [𝑋̂+ ,𝑋̂−], (14)

where we have calculated to the second order in |𝑔|
Δ𝜔 . We apply the

Floquet theory to relation (14) as follows. We find easily that

̂̄̄𝑈 int

( 2𝜋
Δ𝜔

)

= 𝑒
−𝑖2𝜋 |𝑔|2

(Δ𝜔)2
[𝑋̂+ ,𝑋̂−]. (15)

From this, we introduce

̂̄̄𝑈nonpri(𝑡) =
[ ̂̄̄𝑈 int

( 2𝜋
Δ𝜔

)]

Δ𝜔𝑡
2𝜋

= 𝑒−𝑖𝑡
|𝑔|2
Δ𝜔 [𝑋̂+ ,𝑋̂−] (16)

and
̂̄̄𝑈pri(𝑡) =

̂̄̄𝑈 int (𝑡)
̂̄̄𝑈
†

nonpri(𝑡)

= 𝑒𝑖Δ𝜔𝑡𝑎̂
†
2 𝑎̂2 𝑈̂†𝑒−𝑖Δ𝜔𝑡𝑎̂

†
2 𝑎̂2 𝑈̂ . (17)

The function (17) is really 2𝜋
Δ𝜔 -periodic. According to (17), it holds that

̂̄̄𝑈 int (𝑡) =
̂̄̄𝑈pri(𝑡)

̂̄̄𝑈nonpri(𝑡). (18)

The decomposition (18) of the approximate evolution operator (14)
has the following physical meaning. Let us assume that, initially, the
fundamental frequency mode is in any single-mode state and the second
harmonic mode is in a vacuum state. The operator ̂̄̄𝑈nonpri(𝑡) means the
effectively Kerr dynamics. The operator ̂̄̄𝑈pri(𝑡) means a deviation from
this dynamics. Since the operator ̂̄̄𝑈pri(𝑡) itself has been derived in an
approximate calculation, it is not the deviation of the exact evolution
from the effectively Kerr dynamics. Using the numerical examples below
we will show that ̂̄̄𝑈pri(𝑡) leads only to order-of-magnitude coincidences
with the exact dynamics.

As was said above, Eq. (11) is derived similarly as the effective
Hamiltonian is derived from the interaction one in [16]. Let us note
two minor differences:

(1) In [16], the effective Hamiltonian is expressed as a transform of
the interaction Hamiltonian, but for the purposes of this paper on the
contrary the reduced Hamiltonian should be expressed as a transform
of the effective Hamiltonian.

(2) In [16], the interaction Hamiltonian is rather a version of the
reduced Hamiltonian and as such it should be denoted as

𝐻̂redKSS = Δ𝜔𝑋̂3 + 𝐻̂int , (19)

where KSS means Klimov and Sánchez-Soto and 𝑋̂3 = 1
3 (𝑎̂

†
2𝑎̂2 − 𝑎̂†1𝑎̂1).

The similarity of the derivation is given by the relation

𝑎̂†2𝑎̂2 = 𝑋̂3 +
1
3
𝑁̂, (20)

where

𝑁̂ = 𝑎̂†1𝑎̂1 + 2𝑎̂†2𝑎̂2 (21)

is a constant of motion.
The approaches in [16] and in this paper are able to express the

exact evolution of the state vector in the Schrödinger picture. The first
approach is simpler,

exp(−𝑖𝑡𝐻̂)|𝜓(0)⟩ = exp
(

−𝑖𝑡
𝜔1 + 𝜔2

3
𝑁̂
)

exp(−𝑖𝑡𝐻̂redKSS)|𝜓(0)⟩. (22)

The product of the last two factors on the right-hand side describes the
evolution in the picture of the first approach. The second approach is a
little more complicated,

exp(−𝑖𝑡𝐻̂)|𝜓(0)⟩ = exp(−𝑖𝑡𝐻̂0)

× exp(𝑖Δ𝜔𝑡𝑎̂†2𝑎̂2) exp(−𝑖𝑡𝐻̂red)|𝜓(0)⟩. (23)

The product of the last three factors on the right-hand side describes the
evolution in the picture of the second approach. On equating, it follows
that

exp(−𝑖𝑡𝐻̂redKSS)|𝜓(0)⟩ = exp(−𝑖Δ𝜔𝑡𝑋̂3)
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