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a b s t r a c t

Over the past decade the Harmonic-Balance technique has been established as a viable alternative to
direct time integration methods to predict periodic aeroelastic instabilities. This article reports the pro-
gress made in using a frequency updating procedure, based on a coupled fluid-structural solver using the
Harmonic-Balance formulation. In particular, this paper presents an efficient implicit time-integrator that
accelerates the convergence of the structural equations of motion to the final solution. To demonstrate
the proposed approached, the paper includes a detailed investigation of the impact of input parameters
and exercises the method for two types of fluid-structural nonlinear instabilities: transonic limit-cycle
oscillations and vortex-induced vibrations.
� 2018 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

The ever growing capability of computing hardware and soft-
ware, enabled high fidelity computational fluid dynamics (CFD)
to become the primary tool for the study of fluid physics. With sim-
ilar advancements in computational structural dynamics (CSD) and
coupling algorithms, CFD has also been extensively applied to
fluid-structure interaction problems where flow nonlinearities
such as shock waves or flow separation play a dominant role.
The time dependency of this type of analysis means it usually
requires additional computational resources. Nevertheless, fluid-
structure interactions play a safety critical role in several applica-
tions such as aircraft flutter or vortex induced vibration (VIV) fre-
quency lock-in. Therefore, the efficient prediction of these and
associated phenomena attracts much attention from the numerical
methods research community.

Several alternatives to full time-domain simulations have been
proposed to investigate the loss of linear stability of an aeroelastic
system. Badcock et al. avoid conducting time-domain analysis by
tracking the critical eigenvalue of the coupled system Jacobian
matrix [1–3], at an equivalent cost of a few steady-state calcula-
tions; if the Jacobian of the coupled system is not available, linear
reduced-order models (ROM) can be built from prescribed time

domain simulations [4,5] and used to infer the system’s stability
at a lower cost than using the full-order model.

If nonlinearities are present, additional instabilities have been
observed which pose further challenges to the development of effi-
cient simulation tools [6]. In particular, nonlinearities such as
shocks, vortex shedding or free-play can cause periodic oscilla-
tions, generally referred to as limit cycle oscillations (LCO) that
are not captured by linear ROMs. Therefore, the development of
nonlinear ROMs is a popular topic of research [7–10]. The system’s
nonlinear response can be approximated based on input-output
relations using a recursive nonlinear interpolator in lieu of the full
order aerodynamic model [11–13]; Yao and Marques applied an
input-output technique employing a radial basis function (RBF)
neural network together with a discrete empirical interpolation
method to reconstruct the complete flow field for the prediction
of LCO [14].

The aforementioned nonlinear methods rely on performing
time domain simulations a priori, under specific conditions that
enable a suitable nonlinear model for the problem to be built.
Alternative methods have been proposed that preserve the under-
lying physics of the problem and allow the direct computation of
the nonlinear system. Following the stability analysis described
in Refs. [1,3], LCO can be predicted by model order reduction using
the critical eigenbasis of the Jacobian of the coupled system.
Another alternative in this class of methods is to exploit the peri-
odicity of the problem and solve the fluid-structural system in
the frequency domain, these strategies are commonly known as
Time-Spectral method or high-dimensional Harmonic Balance
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(HB) approach. The HB method transfers the time dependent prob-
lem into a steady solution based on Fourier expansions. Originally
applied in the context of CFD for turbomachinery problems [15,16],
the HB method has been used in several diverse applications,
including the prediction of dynamic derivatives [17,18], periodic
flows found in rotorcraft [19] or wind-turbines [20]. Progress has
also been made in applying the HB methodology to fluid structure
interaction. For the majority of such cases, it is worth noting that
the fundamental frequency of the oscillation is not known a priori
and is an additional unknown. Thomas et al. developed the HB/LCO
method to predict LCO based on a Newton–Raphson approach,
where a HB formulation solves the fluid problem and amplitude
and frequency are determined simultaneously [21]. Blanc et al.
proposed a fully coupled aero-structural Harmonic Balance solver
for forced motions. Ekici and Hall also developed a fully coupled
fluid-structure coupled HB strategy capable of predicting LCOs
for one degree-of-freedom (DOF) turbomachinery components
[22]. Yao and Marques, building upon these approaches, proposed
an Aeroelastic-HB (A-HB) to analyze fixed wing nonlinear aeroelas-
tics [23] and this was further adapted to VIV lock-in by Yao and Jai-
man [24].

The A-HB approach and its version developed for VIV
employs an explicit scheme to resolve the structural equations
of motion, together with a relaxation approach to update the
fundamental frequency of the oscillation. Both these strategies
limit the efficiency of the iterative scheme. This paper
addresses these limitations by reformulating the A-HB method
using an approximate exponential time differencing scheme
and subsequent modified strategy to update the frequency.
The following sections will describe the numerical formulation
for the flow and structural models, this is followed by the
introduction of the new coupling procedure; the final two sec-
tions of the paper present a diverse range of test cases used to
critique the new A-HB method and the conclusions obtained
from this work.

2. Aeroelastic - harmonic balance formulation

2.1. Fluid governing equation

The governing fluid equations used in this work are the com-
pressible Euler or laminar Navier-Stokes equations. For time-
dependent problems with moving boundaries, the system of equa-
tions is solved using an arbitrary Lagrangian-Eulerian (ALE) formu-
lation as follows:

dw
dt

¼ �RðwÞ ð1Þ

RðwÞ ¼ r � Fi � Fv
� �

; ð2Þ

the integral form of these equations for a control volume V j with
surface dS can be written as:

d
dt

Z
VjðtÞ

wdV þ
I
@VjðtÞ

Q � n dS ¼ 0 ð3Þ

and

Q ¼ ðFi � Fv �wvgÞ; ð4Þ

where t is the physical time, w ¼ q;qu;qE½ �T is the vector of con-
served variables, the over-bar denotes the control volume average
quantities; q is the density and E is the energy, u and vg are the
Cartesian flow and grid velocities vectors, respectively and n is

the outward unit normal of every cell face. Fi and Fv correspond
to the inviscid and viscous fluxes, respectively and can be written
in compact form as:

Fi ¼
qu

quiuþ pdij
ðqEþ pÞu� pvg

2
64

3
75; Fv ¼

0
sij

siju� qi

2
64

3
75; i ¼ 1;2;3: ð5Þ

The inviscid flux is calculated by the AUSMþ � up flux function
[25], together with the Van Albada limiter to achieve 2nd order
spatial accuracy, details of this implementation can be found in
Ref. [26]. The viscous stress tensor sij and the heat flux qi are
given by:

sij ¼ l @ui

@xj
þ @uj

@xi
� 2
3
@uk

@xk
dij

� �
ð6Þ

qi ¼ �l cp
Pr

@T
@xi

ð7Þ

where l is the coefficient for laminar viscosity, cp is the specific heat
ratio for a perfect gas and Pr ¼ 0:72 is the laminar Prandtl number.
The pressure is given by the ideal gas law:

p ¼ ðc� 1Þq E� 1
2
ðu � uÞ

� �
ð8Þ

where c ¼ 1:4 and represents the ratio of specific heats for a dia-
tomic gas.

Following Hall et al. [16], Eq. (1) can be written in the high
dimensional HB format as

xDwhb þ Rhb ¼ 0; ð9Þ
where x is the system’s fundamental frequency, whb and Rhb are
the fluid and residual solution at equally spaced time intervals
Dt ¼ T=ð2NH þ 1Þ where T ¼ 2p=x and NH corresponds to the
number of harmonics selected. The matrix D is given by:

Di;k ¼ 2
2NH þ 1

XNH

n¼1

n sin
2pnðk� iÞ
2NH þ 1

� �
: ð10Þ

Full details of the HB implementation and derivation of matrix D
can be found in Refs. [23,27]. The Eq. (9) is solved by introducing
a pseudo time variable, s:

dwhb

ds
þxDwhb þ Rhb ¼ 0: ð11Þ

This means that the time dependency of the fluid equation is
converted into a steady problem. An LU-SGS [28] scheme is
employed to March the Eq. (11) forward in pseudo-time.

2.2. Structural governing equations

The equations of motion for a linear structural model can be
described in general terms as

M€gþ f _gþ Kg ¼ f ; ð12Þ
here M; f; K are the mass, damping and stiffness matrices of the
structure, g and f are the displacement and external force applied
to the structure. The latter two quantities also correspond to the
output and input to the structural system. The structural equations
in state space format can be described as,

_n ¼ Asnþ Bsf ð13Þ
where

As ¼
0 I

�M�1K �M�1f

� �
; Bs ¼

0
M�1

� �
; n ¼ g

_g

� �
:

Similar to the fluid equations, the same HB operator D can be
applied to Eq. (13), resulting in

ðxD� AsÞghb ¼ Bsf hb: ð14Þ
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