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We estimate the Jacobian of harmonic mapping of the unit disk onto a smooth and 
convex Jordan domain via the boundary function and the boundary curvature of the 
image domain. By using this result we make some asymptotically sharp estimates of 
constant of quasiconformality for harmonic diffeomorphisms between the unit disk 
and the convex domains via their boundary mappings.
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1. Introduction and preliminary results

One of central questions on harmonic mapping theory is under what condition a homeomorphism F of the 
unit circle onto a Jordan curve γ generates, via Poisson integral a harmonic diffeomorphism. A fundamental 
result in this direction is the Rado–Choquet–Kneser theorem which asserts that, if γ is convex and F is a 
homeomorphism, then w = P [F ] is a diffeomorphism. Further, an interesting question is that, under what 
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condition on F and γ, w = P [F ] is quasiconformal. O. Martio was the first to observe such a question. 
Pavlović in [19] solved this problem for γ being the unit disk. Kalaj solved this problem for γ being a 
convex Jordan curve of class C1,α in [8] and for Dini’s smooth Jordan curve in [11]. Zhu in [21] considered 
this problem for general convex Jordan curve. For some different approaches in the plane concerning the 
class of q.c. harmonic mappings we refer to the papers [3,9,13–18,22,23]. Some recent optimal results on 
the generalization of this class has been done in [1,12,24]. In this paper we focus our attention in some 
quantitative estimates of quasiconformal constant of a mapping via its trace F mapping the unit circle onto 
a strictly convex Jordan curve γ. This is done in Theorems 2.3, 2.4 and 2.5. One of main tools in the proof 
is Lemma 1.2, which makes itself an interesting result.

1.1. Harmonic functions and Poisson integral

The function

P (r, t) = 1 − r2

2π(1 − 2r cos t + r2) , 0 ≤ r < 1, t ∈ [0, 2π],

is called the Poisson kernel. The Poisson integral of a complex-valued function F ∈ L1(T) is a complex-valued 
harmonic function given by

w(z) = u(z) + iv(z) = P [F ](z) =
2π∫
0

P (r, t− τ)F (eit)dt, (1.1)

where z = reiτ ∈ U. Here U := {z ∈ C : |z| < 1} and T := {z ∈ C : |z| = 1}. On the other hand the 
following claim holds:
Claim 1: If w is a bounded harmonic function, then there exists a function F ∈ L∞(T), such that w(z) =
P [F ](z) (see e.g. [2, Theorem 3.13 b), p = ∞]).

We refer to the book of Axler, Bourdon and Ramey [2] for good setting of harmonic functions.
The Hilbert transformation of a function χ ∈ L1(T) is defined by the formula

χ̃(τ) = H(χ)(τ) = − 1
π

π∫
0+

χ(τ + t) − χ(τ − t)
2 tan(t/2) dt.

Here 
∫ π

0+ Φ(t)dt := limε→0+
∫ π

ε
Φ(t)dt. This integral is improper and converges for a.e. τ ∈ [0, 2π]; this 

and other facts concerning the operator H used in this paper can be found in the book of Zygmund [25, 
Chapter VII]. If f is a complex-valued harmonic function then a complex-valued harmonic function f̃ is 
called the harmonic conjugate of f if f + if̃ is an analytic function. Notice that such a f̃ is uniquely 
determined up to an additive constant. Let χ, χ̃ ∈ L1(T). Then

P [χ̃] = P̃ [χ], (1.2)

where P̃ [χ] is the harmonic conjugate of P [χ] (see e.g. [20, Theorem 6.1.3]).
Assume that z = x + iy = reiτ ∈ U. The complex derivatives of a differential mapping w : U → C are 

defined as follows:

wz = 1
2

(
wx + 1

i
wy

)
and
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