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A B S T R A C T

A nonlinear resonance (eigenvalue) based semi-analytical approach is employed here for computation of the
elastic mode 2 collapse pressures of moderately-thick to thin isotropic rings, weakened by harmonic or modal
type imperfections. The mode 2 collapse pressure is, by definition, associated with the buckled mode shape of
cos(2θ) type, and is the harmonically imperfect ring counterpart to the Euler type buckling pressure of a hy-
drostatically pressurized thin perfect ring. A von Karman type iterative nonlinear analysis, which is based on the
assumptions of transverse inextensibility and first-order shear deformation theory (FSDT), is utilized for com-
putation of hydrostatic collapse pressure of a harmonically imperfect ring. Interesting and hitherto unavailable
numerical results pertaining to the effects of harmonic imperfections on the hydrostatic collapse pressures of
imperfect metallic rings are also presented.

1. Introduction

The buckling response of metallic cylindrical shell/ring type struc-
tural components is of great concern to submarine structural designers.
Of primary interest to designers and operators alike is the sensitivity of
the buckling response of ring or very long cylindrical shell type struc-
tures to geometrical defects, such as modal imperfections, e.g., out-of-
roundness, which are apt to be generated during a large scale fabrica-
tion process of such submersibles. Investigation of the influence of this
type of defects on the stability (or lack thereof) of ring/shell type
structural elements is the primary objective of the present study.

Buckling and postbuckling responses of ring type structures have
been extensively studied in the literature [1–9]. The elastic buckling
pressure of a ring is typically associated with the buckled mode shape of
cos(2θ) type, termed here mode 2. The critical pressure of a perfect ring
is typically computed by using a linear (linearized) eigenvalue analysis,
associated with the conventional bifurcation theory [1,7]. However,
structural imperfections, which are expected to be always present,
prevent a structure from reaching its predicted Euler type buckling
pressure. Nonlinear buckling (nonlinear eigenvalue) analysis is more
general and accurate than its linear (eigenvalue) counterpart, because
this permits incorporating geometric imperfections, load perturbations,
etc., into the formulation [10,11]. The differences between the solu-
tions of linear and nonlinear eigenvalue problems are clearly depicted
by Keller and Antman [12] in Figs. 1 and 2 of the chapter “Introduc-
tion” of Ref. [12]. For example, (i) the branches of the nonlinear eigen
solution, emanating from the eigenvalues of the linear problem, may be

curved, (ii) there may be no branch of the nonlinear solution emanating
from the eigenvalue(s) of its linearized counterpart, (iii) there may be
several branches emanating from a single eigenvalue of the linearized
problem, (iv) there may be a secondary bifurcation, (v) the branches
from distinct eigenvalues of the linearized problem may be connected,
or (vi) there may be branches of solution in nonlinear eigenvalue pro-
blems that do not emanate from the eigenvalues of the linearized pro-
blem, such as the branch C of Fig. 2 of Ref. [12].

The mathematical modeling involves increasing the applied load
(pressure) in small increments until the buckled shape of the ring as-
sociated with the mode 2 becomes unstable (i.e., suddenly, a very small
increment in applied pressure will cause a very large deflection asso-
ciated with this mode) [10,11]. It may be remarked here that since the
elastic postbuckling of a ring involves deformation hardening type
nonlinearity [3,4,7,13,14], there is no final loss of stability in the
postbuckling stage, but buckled shape is no longer of the mode 2 type.
This is in stark contrast to the deformation softening type nonlinearity
caused by, e.g., the thickness effect, [15–18], presence of distributed
fiber misalignments (in fiber reinforced composites) [18,19] and hy-
poelastic or inelastic material properties [13,14,20] in addition to the
thickness effect [21–25]. It may be noted in this context that Tvergaard
and Needleman [26], in relation to the compression failure of thin
metallic structures, such as an elastic column on a softening (inelastic)
foundation and an elastic-plastic plate, were among the first to observe
that the applied load-deflection curve attains a maximum or limit load
point, and also "the final buckled configuration involves a localized
buckling pattern, in contrast with the periodic deformation pattern
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associated with the critical buckling mode".
A review of the literature suggests that since the pioneering work of

Euler in the eighteenth century, who first derived the buckling load of
an initially straight isotropic column, that has been utilized by en-
gineers in column design with appropriate factors of safety, no corre-
sponding analysis has been made available to engineers for computing
the “buckling” load of an initially imperfect isotropic column. The
analysis of a perfect ring is analogous to its counterpart for an initially
straight column, and a similar conceptual gap existed until recently in
regards to the analysis of a modally (or harmonically) imperfect ring.
The primary objective of the present investigation is to present a non-
linear resonance (eigenvalue) based semi-analytical solution technique
for prediction of the elastic mode 2 collapse pressures of moderately
thick rings, weakened by modal or harmonic type imperfections to
bridge this centuries-old conceptual gap, and to provide engineers a
computational tool for the prediction of buckling/collapse pressure of
an imperfect ring. A von Karman type iterative nonlinear analysis,
which is based on the assumptions of transverse inextensibility and
first-order shear deformation theory (FSDT), is employed for compu-
tation of hydrostatic collapse pressure of the imperfect ring.

In what follows, the theoretical formulation of a modally imperfect
ring is described in Section 2. In Section 3, the collapse pressure is
computed by employing an incremental solution approach starting
from the method of virtual work and the total Lagrangian (TL) for-
mulation that results in linearization of the non-linear strain-displace-
ment relations in terms of the incremental displacement components
including rotation. A general discussion on the method of virtual work

and linearized equations of motion by total Lagrangian formulation is
provided in Appendix A, while Appendix B briefly describes the line-
arized buckling analysis of a perfect ring, based on the (linearized)
bifurcation theory. The Newton-Raphson iteration scheme is im-
plemented to solve the resulting matrix equations (see Appendix C).
Double symmetry conditions permit the model to be limited to a quarter
of the ring. The assumed solution functions for incremental displace-
ment components satisfy the prescribed hoop boundary conditions a
priori, and unlike a finite element analysis (FEA), no discretization of
the ring geometry is necessary, which saves a substantial amount of
computation time. Finally, hitherto unavailable numerical results per-
taining to the effects of harmonic imperfections on the hydrostatic
collapse pressures of thin metallic (isotropic) rings are also presented.

2. Theoretical formulation

2.1. Differential geometry

Figs. 1 and 2 show schematics of a perfect and an imperfect ring,
respectively. Fig. 3 exhibits the geometry of the middle surface (center
line) of the same imperfect ring. Here, (φ,ζ) represents the orthogonal
curvilinear coordinates such that the φ denotes the line of curvature co-
ordinate of an imperfect ring (with mode 2 imperfection) at the mid-
surface, while θ represents the corresponding line of curvature of a perfect
ring, and ζ is a straight line normal to φ. The principal curvature of the
reference surface coincides with that of the coordinate line, φ, and the
value of the principal radius of curvature is denoted by R1. The principal
radius of curvature of the corresponding perfect ring is denoted by R.

The mean radius of an imperfect ring can be represented as r = R+
ε cos2θ, where ε is the amplitude of modal imperfection of the ring. As

Nomenclature1

Cijrs0 incremental elastic stiffness (material property) tensor
+ dst Δt differential loading surface arc length evaluated at the first

iteration of each load step when hydrostatic pressure is
applied

dA0 infinitesimal control area of a ring with respect to the in-
itial configuration

E, G Young's and shear moduli of an isotropic material
eij

L
0 linear incremental component of the strain tensor

eij
N

0 linearized incremental component of the strain tensor
Fi(u,ϕ,w1,w2) component of the nonlinear force vector, for i =

1,2,3,4
Fi component of the linear force vector, for i = 1,2,3,4

+ f{ }L
t Δt applied load vector at time t + Δt
+ f{ }NL

t Δt
0 nonlinear internal force vector at time t + Δt

gφ coefficient of the first fundamental differential quadratic
form of the middle surface (center line) of an imperfect
ring in the φ direction

h thickness of the ring
K[ ]L

t
0 linear global stiffness matrix
K[ ]NL

t
0 nonlinear contribution to the global geometric stiffness

matrix
p uniform hydrostatic pressure
pcr hydrostatic buckling pressure of a perfect ring
R, Ri radius of curvature of the middle surface (center line) and

inner surface, respectively, of a perfect ring
+ Rt Δt external virtual work done on a two-dimensional (ring)

body
R1 approximate radius of curvature of the middle surface

(center line) of an imperfect ring
r(θ) radial coordinate of the middle surface (center line) of an

undeformed ring with modal imperfection

+ Sij
t Δt

0 second Piola-Kirchhoff stress tensor at time t + Δt eval-
uated with respect to the initial configuration

+ st Δt loading surface arc length evaluated at the first iteration of
each load step when hydrostatic pressure is applied

t time as an index
ut circumferential displacement component at time t
Δu incremental circumferential displacement component

during the time step from t to t + Δt
ΔW incremental virtual work during the time step from t to t

+ Δt
w w,t t

1 2 linear and nonlinear contributions to the transverse dis-
placement component (deflection) at time t

Δw Δw,1 2 linear and nonlinear contributions to the incremental
transverse displacement component (deflection) during
the time step from t to t + Δt

X, Z cartesian coordinates of a point on the inner surface of a
deformed ring

x, z cartesian coordinates of a point on the middle surface
(center line) of an undeformed ring

ε amplitude of modal imperfection (eccentricity) of a ring
εφ extensional strain component in the direction φ
εφζ shear strain component in the φ-ζ plane
ϕt rotation of the normal to the middle surface (center line)

of the deformed ring at time t
Δϕ incremental rotation of the normal to the middle surface

(center line) of the deformed ring during the time step
from t to t + Δt

φ, ζ coordinates attached to the middle surface (center line) of
an imperfect ring

θ angle measured from the global x axis
σφ extensional stress component in the direction φ
σφζ shear stress component in the φ-ζ plane

1 Please note: A bold symbol denotes either a vector or a matrix.
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