
Contents lists available at ScienceDirect

Precision Engineering

journal homepage: www.elsevier.com/locate/precision

Application of the adaptive Monte Carlo method in a five-axis machine tool
calibration uncertainty estimation including the thermal behavior☆

A. Los⁎, J.R.R. Mayer
Mechanical Engineering Department, Polytechnique Montréal, P.O. Box 6079, Station Downtown, H3C 3A7 Montréal, QC, Canada

A R T I C L E I N F O

Keywords:
Machine tool
Calibration
SAMBA
Monte Carlo
Uncertainty

A B S T R A C T

Calibration of the geometry of five-axis machine tools needs to be performed periodically since the machine
accuracy has a direct impact on machined parts. Because mechanical adjustment and a software correction may
be done using calibration results, the measurement results must be evaluated. In this paper, the scale and master
ball artefact (SAMBA) method is evaluated through the estimation of the uncertainty of the identified machine
geometric error parameters. This approach has the multi-input multi-output (MIMO) model and an iterative
solution that makes it challenging to apply commonly used uncertainty calculation methods The Guide to the
Expression of Uncertainty in Measurement Supplement 2 (GUM S2) gives the opportunity to estimate the un-
certainty of a MIMO model through the adaptive Monte Carlo method (MCM). In order to include all the un-
certainty sources, the input uncertainty is estimated from the repeated calibration tests performed in different
thermal conditions (with and without the warm-up cycle). The uncertainty is calculated for each of the identified
machine geometric error parameters along with their covariance. The correlation between the output variables
and the impact of the machine state, before and during the repeated calibration, are analyzed. The results
demonstrate that the machine tool geometry variations occur even without the warm-up cycle performed before
the calibration. Moreover, machine performance has an impact the calibration results.

1. Introduction

The calibration of a machine tool requires estimating the geometric
errors parameters of its linear and angular axes. Schwenke et al. [1]
described and classified different methods for machine tool calibration
into two groups: direct and indirect methods. The former allow mea-
suring the axis errors without the influence of the other axes and are
commonly conducted using laser interferometry techniques [2,3]. The
latter identify errors using different measuring devices, such as ball-bar
[4], various 2- and 3-D artefacts [1,5–7], laser trackers [8] and laser
tracer [9] or an uncalibrated artefact probing [10].

Once the estimates of the geometric errors parameters have been
obtained, the decision of using them for a correction and/or compen-
sation must be made. That is why the calibration results should be
evaluated. One of the evaluation methods can be conducted through the
predicted (with and without calibration) workpiece feature errors as
Bringmann et al. proposed in [11], that allowed choosing the most
optimal calibration method. The estimated calibration results can also
be evaluated through their uncertainty as any other kind of measure-
ment result. Since the measurement models used in the indirect

methods are complex and are multi-input multi-output, the general
uncertainty framework (GUF) for a single output presented in GUM
[12] cannot be conducted.

Bringmann et al. [13] estimated the uncertainties on the machine
geometric errors parameters of a three-axis machine tool obtained with
the model-based indirect calibration method, called “chase the ball”,
using general Monte Carlo method (MCM). This approach requires
adding noise to the geometric errors in the simulated machine model.
The noise values are chosen arbitrarily from standards or machine
specifications without considering correlations between them or the
obtained calibration results. The authors also depicted that the machine
performance (the positioning accuracy and repeatability) has a sig-
nificant impact on the calibration results. Other researchers also ap-
plied MCM based on GUM Supplement 1 (GUM S1) [14]. Andolfatto
et al. [15] used the adaptive MCM to estimate uncertainty on machine
tool axis location errors with the confidence intervals. Schwenke et al.
[16] estimated the uncertainty on six parametric errors of the Y-axis of
a coordinate measuring machine (CMM) and on a milling machine. The
machine errors are identified using a laser tracer. The displacement
measurements noise is estimated as normally distributed random
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numbers without considering the correlation between the input data.
All of the mentioned approaches use the MCM for a multi‐output model
but do not consider the full uncertainty structure (standard un-
certainties and covariance of the measured data) (JCGM 104:2009 6)
[17], nor the coverage factor associated with the number of the esti-
mated parameters.

The method for generating the correlated measurement signal that
can be propagated through the MCM was presented by van Dorp et al.
[18]. The authors performed the short- (with high resolution) and long-
wave (with lower resolution) direct calibration measurements of the
geometric errors on the coordinate measuring machine (CMM). The
registered signals were used to generate the surrogate signals using the
auto-correlation algorithms so that the correlation between them was
kept. The obtained measurement signals variations were propagated on
the ring diameter measurement uncertainty.

Not only the correlation of the input quantity should be considered,
but the correlation between the calibration results (machine geometric
error parameters) should be estimated as well. Obtained correlation
coefficents can be later used as one of the machine model optimization
factors as it has been presented in [19]. The indirect calibration
methods allow estimating many geometric errors simultaneously. That
is why the covariance between them should also be considered when
the uncertainties are calculated. Moreover, the coverage factor should
be based not only on the desired coverage probability but on the
number of the output values as well. The opportunity of calculating the
uncertainty on the multi‐output model results with the full uncertainty
structure is given in GUM S2 [20]. It has been applied by Eichstadt et al.
[21] to an efficient uncertainty estimation in a challenging case of a
dynamic measurement, which requires simulating and processing a
large amount of data The direct MCM uncertainty estimation results
were compared with two other MCM memory-efficient approaches.
Performing the data processing before application of MCM allowed the
authors reducing the size of the generated samples and obtaining the
uncertainty estimation results that were validated with the direct MCM.

In this paper, the machine geometric error parameters are identified
using the SAMBA [10] method, whereby the volumetric observations
are gathered using an uncalibrated artefact made of a number of
spheres, a calibrated fixed length ball bar (scale bar) and a touch trigger
probe mounted in the machine tool spindle. The machine, with its axis
location and linear axis positioning error gains, is modeled using rigid
body kinematics so that its geometric error parameters can be esti-
mated. This method is based on a multi-output model – all the machine
geometric errors are calculated simultaneously from the volumetric
measurement indications (probing data). In this paper, since the
SAMBA method is based on multistage and iterative calculations, ana-
lytical procedures are not easily conducted. Thus, the adaptive MCM
[20] is followed. The GUM S2 provides guidance on the propagation of
the uncertainties for a non-linear multi-input multi-output model.
However, it does not describe how to estimate the uncertainty when an
uncalibrated artefact is used, nor how to include the measurand
changes in the uncertainty budget. The measurand changes were de-
monstrated to be a significant error source of the calibration results by
Bringmann et al. [22]. Moreover, as it was depicted by Knapp [23] for a
direct calibration method using laser interferometry, the calibration
conditions impact the measurement result. The author pointed out that,
in practice, the calibration is performed in a workshop, not in labora-
tory conditions, and the test uncertainty should not be propagated only
from the measuring device uncertainty. The non-optimal conditions
were amplified in the uncertainty propagation in order to demonstrate
that uncertainty results, obtained for example, only from the laser in-
terferometer displacement, may not reflect the reality of the calibration
process.

Changes in the thermal conditions affect the geometry of the ma-
chine, which results in changes of the tool center point (TCP) dis-
placement. This issue has been studied by Mayr et al. [24]. The authors
demonstrated the necessity of including temperature changes for

various axis positions so that they could be compensated with high
accuracy in the whole volume of the machine tool. A similar issue was
analyzed by Ibaraki et al. [25]. The authors used a tracking inter-
ferometer to identify the 2D geometric errors and measure the thermal
effects on a 2D trajectory on a three-axis machine tool. Thermal effects
were assessed by performing the measurements after one hour runs of a
spindle at different speeds. This approach included thermal effects on a
2D plane and not only in few points as it is required during a standard
thermal test. The uncertainty estimation of the estimated trajectories
was performed similarly to the one presented in [11]. Thus, the iden-
tified geometric errors uncertainty is modeled with the values from the
standard or defined by the supplier.

The approach for a multi-axis machine tool calibration including
thermal effects on rotary axes occurring during the machining is pre-
sented in [26]. The proposed method identifies the machine geometric
error parameters from the probing (on-the-machine) of the blank part
and the machined parts. That way, changes occurring during the ma-
chining process are included. However, this approach makes the as-
sumption that the linear axes have high positioning accuracy. The un-
certainty of the calibration results is, again, based on the approach
presented in [11] and [22]. Moreover, the authors point out that when
the calibration is performed when the machine is in the cold state, the
results do not reflect the machine normal operating conditions. Another
method of including the thermal behavior of the machine tool has been
presented in [27]. The authors have modeled the machine as a flat plate
steel (or cast iron) structure and placed the temperature sensors on the
machine components. The data gathered from the temperature mea-
surement was used to map the temperature distribution and to calculate
thermal deformation, which led to estimating the positioning error
caused by that deformation. The calculated positioning error was
compared with the telescopic double bar measurement results. That
showed that proposed thermal model was able to predict over 60% of
the thermally induced positioning errors. However, in this method, the
machine geometric errors are considered constant in time.

In this paper, in order to include the measurand changes (geometric
error parameters) and the calibration’s thermal conditions, the un-
certainties of the probing data are estimated from the repeated mea-
surement conducted under different conditions (with and without the
warm-up cycle). The warm-up cycle, performed before the measure-
ment, allows simulating the machine’s working conditions [28] and is
required when the calibration (using direct methods) is following the
ISO 230-2 standard [29]. However, the ASME B5.54 standard [30] (for
direct methods) do not require a warm-up cycle, and the errors due to
machine heat sources are not present prior to the tests [28]. Conducting
the calibration series with and without the warm‐up cycle allows de-
monstrating the machine performance variations and its influence on
calibration results depending on the calibration pre-conditions. In the
first case, without the warm-up cycle, the machine geometry variations
are analyzed when the measuring conditions are not changing sig-
nificantly. When the warm-up cycle is applied, the machine perfor-
mance is studied when the temperature change is bigger. Despite the
tests are performed in different thermal conditions, the applied geo-
metric error parameters model does not include thermal errors and
their changes. For all the measurements the same model is used to
obtained the calibration results to depict the impact of the test per-
formed with and without the warm-up.

2. SAMBA calibration method

2.1. Artefact probing

The SAMBA method allows estimating the machine geometric error
parameters from the probing (using a touch probe mounted in the
spindle) of a number of master balls (mounted on rods with different
lengths) in different machine rotary axis indexations and a scale bar
(probed at least once). The SAMBA artefact with the four master balls
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