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a b s t r a c t

We provide necessary and sufficient conditions for normal stability of a linear
Hamiltonian system with n degrees of freedom. We also formulate some conditions
for strong stability, which show similarities between the concepts of normal stability
and strong stability. In the last section, we make the necessary adaptations to extend
the concept of normal stability and the results of this paper to periodic Hamiltonian
systems.
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1. Introduction

We consider initially an autonomous quadratic real function H = H(q, p) where (q, p) ∈ R2n,
q = (q1, . . . , qn), p = (p1 . . . , pn). Let S be the symmetric matrix such that

H(z) = 1
2zT Sz, z = (q, p)T ,

and A = JS is a 2n × 2n real Hamiltonian matrix, where J is the standard canonical matrix

J =
(

0 I
−I 0

)
, (1)

0 is the n × n null matrix and I is the n × n identity matrix. The linear Hamiltonian system corresponding
to the Hamiltonian function H is given by

ż = Az. (2)
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Assume that the linear Hamiltonian system (2) is stable, that is, all eigenvalues of A are pure-imaginary
and A is diagonalizable over C. We can assume, without loss of generality (see [1,2] for more details), that
a linear canonical transformation has already been constructed such that

H = ω1

2 (q2
1 + p2

1) + · · · + ωn

2 (q2
n + p2

n), (3)

where ±ω1i, . . . , ±ωni are the eigenvalues of the linearized system.
To each stable linear Hamiltonian system we can associate a Z-module

Mω = {m = (m1, . . . , mn) ∈ Zn; m · ω = m1ω1 + · · · + mnωn = 0}, (4)

where ω = (ω1, . . . , ωn) is determined by the normalization process that changes the Hamiltonian function
into the form given by (3). If Mω = {0} we say that the Hamiltonian system (2) does not possess resonances.
In the opposite case, the system possesses resonances.

It is a natural conjecture that the properties of the stable linear Hamiltonian system can be expressed
by properties of the Z-modules Mω or other algebraic conditions. In the paper [3], the authors introduce a
new concept of stability for autonomous Hamiltonian systems called normal stability and show that a stable
linear Hamiltonian is normally stable if and only if the Moser–Weinstein condition holds. In this paper,
we show other necessary and sufficient conditions for normal stability in the autonomous case, proving
Theorem 2.1. Furthermore, we extend this concept to the periodic case and show some results on this new
type of stability. In Section 2, we show some necessary and sufficient conditions for strong stability and show
a parallel comprehension between this concept and normal stability.

We observe in Section 3 that Theorem 2.1 implies that if the linearized Hamiltonian system associated
to an analytic Hamiltonian function H is normally stable then the equilibrium solution of the Hamiltonian
system associated to H is Lie-stable.

2. Normal stability in the autonomous case

Consider the Z-module associated to the linear Hamiltonian system (2). Since Mω is a submodule of the
finitely generated module Zn and Z is a principal ideal domain, we have that Mω is finitely generated, that
is, there exist m1, . . . , ms ∈ Mω such that

Mω = m1Z ⊕ · · · ⊕ msZ = {j1m1 + · · · + jsms; j1, . . . , js ∈ Z; m1, . . . , ms ∈ Mω}. (5)

In this work we assume that the set of generators {m1, . . . , ms} of Mω is minimal, therefore linearly
independent and s < n. The natural number s is called rank of Mω and denoted by s = rank(Mω).

Suppose that the eigenvalues of A was grouped as follows:
±k11ω1i, ± k12ω1i, . . . , ±k1s1ω1i
±k21ω2i, ± k22ω2i, . . . , ±k2s2ω2i

... ±kr1ωri, ± kr2ωri, . . . , ±krsr ωri

(6)

where ω1, . . . , ωr are linearly independent over Q.
Define E(λ) = kernel(A − λI) = {z ∈ Cn; Az = λz} to be the complex eigenspace corresponding to an

eigenvalue λ. Let

Wj = [E(ωjkj1i)] ⊕ [E(−ωjkj1i)] ⊕ · · · ⊕ [E(ωjkjsj
i)] ⊕ [E(−ωjkjsj

i)].

Note that Wj satisfies the reality condition that λ ∈ Wj if and only if λ ∈ Wj so it is the complexification
of a real A-invariant symplectic subspace Vj and

R2n = V1 ⊕ V2 ⊕ · · · ⊕ Vr.

Let Aj be the restriction of A to the subspace Vj and Hj be the restriction of H to Vj .
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