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a b s t r a c t

The insurer usually solicits the insured through granting a certain amount of deductible to multiple
risks according to his/her own will. Due to the nonlinear nature of the concerned optimization problem,
in the literature on the optimal allocations of deductibles researchers usually assume independence or
comonotonicity among concerned risks and ignore the impact due to frequency. In this study we build
two sufficient conditions for the decreasing optimal allocation of deductibles, relaxing the stochastic
arrangement increasing or right tail weakly stochastic arrangement increasing discount factors in Cai and
Wei (2014, Theorems 6.3 and 6.6) to the conditionally upper orthant arrangement increasing or weak
conditionally upper orthant arrangement increasing frequencies.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let X = (X1, . . . , Xn) be a vector of n random risks faced by
a policyholder, and denote T = (T1, . . . , Tn) the vector of the
corresponding occurrence frequencies. Through paying a premium,
the policyholder could obtain a total coverage from an insurer.
In the case of a total deductible of d > 0 granted for Xi’s, let
d = (d1, . . . , dn) be an allocation vector and denote Ad all ad-
missible allocation vectors such that

n
i=1 di = d and di ≥ 0 for

all i ∈ In = {1, . . . , n}, then the policyholder gets the total dis-
counted retained loss

n
i=1 e

−δTi(Xi ∧ di), where x∧ d = min{x, d}
and δ ≥ 0 is the discount rate. Let ω be the wealth of the policy-
holder after the premium is paid and u(x) be his/her utility func-
tion, then, from the viewpoint of the risk-averse policyholder, the
optimization allocation problem of deductibles is summarized asmax

d∈Ad
E


u

ω −

n
i=1

e−δTi(Xi ∧ di)

,

where u is increasing and concave, and X is independent of T .
(1.1)

Let φ(x) = −u(ω− x). Due to the equivalence between increasing
and convex φ and increasing and concave u, the problem (1.1) can
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be equivalently rephrased asmin
d∈Ad

E


φ

 n
i=1

e−δTi(Xi ∧ di)

,

where φ is increasing and convex, and X is independent of T .

Cheung (2007) and Hua and Cheung (2008a) took the first step
to study the above optimization problems. Also, Hua and Che-
ung (2008b) studied the worst allocations of deductibles from the
viewpoint of the insurer, and from the viewpoint of the policy-
holder Zhuang et al. (2009) derived some new refined results on
the ordering of the optimal allocations of deductibles with respect
to the family of distortion risk measures. Later, from the view
point of policyholder with increasing utility function Lu and Meng
(2011), Hu and Wang (2014) and Li and Li (2017) also had a study
on the optimal allocation of deductibles for mutually independent
risks without frequency impact and arrayed in the sense of likeli-
hood ratio order, hazard rate order or reversed hazard rate order.

Denote by d∗
= (d∗

1, . . . , d
∗
n) one solution of (1.1). The

earlier research in the literature concerned with this problem
either ignores the frequency impact or simply assumes the mutual
independence for frequencies of occurrence. For example, Cheung
(2007) proved that (i) for mutually independent X and δ = 0 (no
frequency impact), d∗

i ≥ d∗

j for 1 ≤ i ≠ j ≤ n if Xi is smaller than
Xj in the hazard rate order, and (ii) for comonotonic X (the worst
dependent structure of severities of risks) and δ = 0 (no frequency
impact), d∗

i ≥ d∗

j for 1 ≤ i ≠ j ≤ n if Xi is stochastically smaller
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than Xj. Hua and Cheung (2008a) further showed, for comonotonic
X and mutually independent T , that d∗

i ≥ d∗

j if Tj is smaller than
Ti in the likelihood ratio order and Xi is smaller than Xj in the
stochastic order, for any 1 ≤ i ≠ j ≤ n and δ > 0. Later,
Zhuang et al. (2009) obtained that (i) for mutually independent
X and T , d∗

i ≥ d∗

j if Tj is smaller than Ti in the likelihood ratio
order and Xi is smaller than Xj in the likelihood ratio order, for any
1 ≤ i ≠ j ≤ n and δ > 0, and (ii) for comonotonic X and mutually
independent T , d∗

i ≥ d∗

j if Tj is smaller than Ti in the reversed
hazard rate order and Xi is smaller than Xj in the stochastic order,
for any 1 ≤ i ≠ j ≤ n and δ > 0. Recently, without regard to
frequency effect (i.e, δ = 0) Li and You (2015) further proved that
d∗

i ≥ d∗

j for any 1 ≤ i < j ≤ n if Xi is smaller than Xj in the
hazard rate order and X has an Archimedean survival copula with
a log-convex generator.

Along this line, some effort had been put into the optimiza-
tion problem (1.1) in this decade. One remarkable improvement is
due to the introduction of statistical dependence into either sever-
ities X or frequencies of occurrence T , which makes the model
more flexible in practice andmore general in theoretical sense. For
comonotonic X with X1 ≤st · · · ≤st Xn and T with T1 ≥lr · · · ≥lr Tn
and coupled by an Archimedean copula, Li and You (2012, Theo-
rem 2) showed that the allocation d with d1 ≤ · · · ≤ dn is one
of least favorable allocations for the policyholder. Denote W =

(W1, . . . ,Wn) = (e−δT1 , . . . , e−δTn) the vector of discount factors
corresponding to frequencies of occurrence T . Recently, Cai and
Wei (2014, Theorems 6.3 and 6.6) developed two sufficient con-
ditions for d∗

1 ≥ · · · ≥ d∗
n: (i) X and W both SAI; (ii) comonotonic

X withX1 ≤st · · · ≤st Xn andRWSAIW . This study further builds the
following two new sufficient conditions for d∗

1 ≥ · · · ≥ d∗
n , relax-

ing the dependence on W at a cost of adding some restrictions on
the utility functions:
• Nonnegative SAIX , CUOAIW , and uwith convex u′ and concave

u′′;
• Nonnegative and comonotoneX withX1 ≤st · · · ≤st Xn,WCUOAI

W , and uwith convex u′ and concave u′′.
The rest of this paper is rolled out as follows: Section 2

introduces some preliminaries including concerned stochastic
orders, various stochastic versions of the arrangement increasing
properties as well as several useful lemmas. In Section 3 we build
the two sufficient conditions for the decreasing optimal allocation
of deductibles. Also, two numerical examples are presented in
Section 4 to illustrating the main results. All proofs for technical
lemmas are given in Section 5.

From now on, we denote R = (−∞,+∞),R2
+

= (0,+∞)2

and let x ∨ y = max{x, y}. Throughout this note, expectations
are implicitly assumed finite whenever utilized, and the terms
increasing and decreasing mean nondecreasing and nonincreasing,
respectively.

2. Some preliminaries

For two real-valued vectors x = (x1, . . . , xn) and λ =

(λ1, . . . , λn), let the permutation τi,j(x) = (x1, . . . , xj, . . . , xi,
. . . , xn) and the sub-vector x(i,j) = (x1, . . . , xi−1, xi+1, . . . , xj−1,
xj+1, . . . , xn) for 1 ≤ i < j ≤ n, and denote the inner product
λ · x = λ1x1 + · · · + λnxn and the pairwise minimum λ ∧ x =

(λ1 ∧ x1, . . . , λn ∧ xn).
A random variable X is said to be smaller than the other one Y

in the
(i) usual stochastic order (denoted as X ≤st Y ) if P(X > x) ≤

P(Y > x) for all x;
(ii) increasing convex order (denoted as X ≤icx Y ) if


+∞

x P(X >

t) dt ≤


+∞

x P(Y > t) dt for all x, provided the existence of
the two integrals;

(iii) mean residual life order (denoted as X ≤mrl Y ) if


+∞

x P(X>t) dt
P(X>x) ≤

+∞

x P(Y>t) dt
P(Y>x) for all x.

For stochastic orders one may refer to Shaked and Shanthiku-
mar (2007), and Li and Li (2013).

A real function f (x) is said to be arrangement increasing (AI) if
f (x) ≥ f


τi,j(x)


for any xwith xi ≤ xj and 1 ≤ i < j ≤ n. For i ≠ j,

let∆ijg(x) = g(x)− g

τi,j(x)


and denote

Ai,j
s (n) =


g(x) : ∆ijg(x) ≥ 0 for any xj ≥ xi


,

Ai,j
rw(n) =


g(x) : ∆ijg(x) is increasing in xj ∈ [xi,∞) for any xi


.

According to Cai and Wei (2014), a random vector X on Rn is said
to be

(i) stochastic arrangement increasing (SAI) if E[g(X)] ≥ E

g

τi,j

(X)


for any g ∈ A
i,j
s (n) and 1 ≤ i < j ≤ n such that the

expectations exist;
(ii) right tail weakly stochastic arrangement increasing (RWSAI) if

E[g(X)] ≥ E

g

τi,j(X)


for any g ∈ A

i,j
rw(n) and 1 ≤ i < j ≤ n

such that the expectations exist.

For absolutely continuous random vectors, the SAI property is
equivalent to the corresponding AI probability density (see Cai and
Wei, 2014), and the RWSAI property is equivalent to the upper tail
permutation decreasing (UTPD) probability density (see Li andYou,
2015). Cai andWei (2014) and Li and Li (2016) also introduced the
following weak versions. X is said to be

(i) upper orthant arrangement increasing (UOAI) if the joint
survival function F̄(x) is AI;

(ii) conditionally upper orthant arrangement increasing (CUOAI) if
[(Xi, Xj) | X(i,j) = x(i,j)] is UOAI for any fixed x(i,j) in support of
X(i,j) and any 1 ≤ i < j ≤ n;

(iii) lower orthant arrangement increasing (LOAI) if the joint
distribution function F(x) is AI;

(iv) conditionally lower orthant arrangement increasing (CLOAI) if
[(Xi, Xj) | X(i,j) = x(i,j)] is LOAI for any x(i,j) in support of X(i,j)
and any 1 ≤ i < j ≤ n;

(v) weak conditionally lower orthant arrangement increasing
(WCLOAI) if t

−∞

P

Xi ≤ xi, Xj ≤ xj | X(i,j) = x(i,j)


dxi

≥

 t

−∞

P

Xi ≤ xj, Xj ≤ xi | X(i,j) = x(i,j)


dxi,

for all 1 ≤ i < j ≤ n, t ≤ xj and any x(i,j) in support of X(i,j).

Here we introduce the following dependence notion as the dual
of WCLOAI.

Definition 2.1. A random vector X is said to be weak conditionally
upper orthant arrangement increasing (WCUOAI) if, for all 1 ≤ i <
j ≤ n, t ≥ xj and any x(i,j) in support of X(i,j),

+∞

t
P

Xi > xi, Xj > xj | X(i,j) = x(i,j)


dxi

≤


+∞

t
P

Xi > xj, Xj > xi | X(i,j) = x(i,j)


dxi.

Based on (4.2) of Cai and Wei (2014), one can easily verify the
following chain of implications,

SAI =⇒ RWSAI =⇒ CUOAI =⇒ WCUOAI
=⇒ X⊥

1 ≤icx · · · ≤icx X⊥

n ,

where (X⊥

1 , . . . , X
⊥
n ) is the independence version of X . As per the

next numerical example, neither CUOAI imply RWSAI norWCUOAI
imply CUOAI.
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