
Systems & Control Letters 106 (2017) 24–31

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

External stability of switching control systems✩

Cong Wu, Xinzhi Liu *
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

a r t i c l e i n f o

Article history:
Received 20 October 2015
Received in revised form 19 May 2017
Accepted 25 May 2017

Keywords:
External stability
Normal L2 norm
Switching system
Maximum dwell time
Minimum dwell time

a b s t r a c t

This paper investigates external stability (defined by the normal L2 norm) of switching control systems.
It proposes definitions of the maximum, minimum dwell time for switching systems and then derives
an important relation between the number of switchings and the maximum, minimum dwell time.
Applying this relation, it establishes criteria on external stability of switching control systems consisting of
Hurwitz stable subsystems. Furthermore, a switching law is proposed, and is proven to be realizable. Given
this proposed switching law and applying the previous derived relation, the switching control systems
comprised of both Hurwitz stable and Hurwitz unstable subsystems are proved to be externally stable.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For a control system, if we think of u ∈ L2 as a ‘‘well behaved’’
input, the question to ask is whether the output y will be ‘‘well
behaved’’ in the sense that y ∈ L2 [1]. If any ‘‘well behaved’’ input
generates a ‘‘well-behaved’’ output, then the control system will
be defined as a stable system [1]. This type of stability is also called
external stability [2]. External stability plays a special role in sys-
tem analysis because it is natural to work with square-integrable
signals which can be viewed as finite-energy signals [1]. If one
thinks of u(t) as current or voltage, then uT (t)u(t) is proportional to
the instantaneous power of the signal, and its integral over all time
is a measure of the energy content of the signal. Certainly, others
like random signals may be also usable [3]. Switching systems,
consisting of a family of subsystems and a switching law that deter-
mines which subsystem is active during a certain time interval [4],
have been used as an important framework for externally stable (or
related) control in recent years [5–8]. In [5], authors investigated
the weighted disturbance attenuation properties (the weighted L2
norm of output is bounded by the L2 norm of disturbance input)
of switched systems. However, ’weighted’ changes the original
meaning and no explicit switching law is proposed for those
systems consisting of both Hurwitz stable and Hurwitz unstable
subsystems. In [6,7], the weighted input–output relation following
from [5] was adopted. In [8], a normal L2 relation between input
and output was studied but the average dwell time could not be
directly substituted into the integral in (36) of [8]. Up to now, the
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external stability of switching control systems still remains open.
We shall investigate it in this paper.

2. Preliminaries

Consider the following switching control system

ẋ(t) = Aσ (t)x(t) + Bσ (t)u(t),
y(t) = Cσ (t)x(t) + Eσ (t)u(t),
x(t0) = x0, (1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp denote the state, input and
output, respectively. The number of state variables n is called the
order of the control system. Aσ (t), Bσ (t), Cσ (t) and Eσ (t) are known
matriceswith appropriate dimensions, where σ (t) is the switching
signal, which takes values from an index set P = {1, 2, . . .} and
denotes the number of the active subsystem at t , i.e. σ (t) = i ∈ P

means the subsystem i is active at t . Corresponding to σ (t), there is
a sequence of time instants t1 < t2 < · · · < tk < · · · , limk→∞tk =

∞, where tk, k = 1, 2, . . ., is the switching instant and t1 > t0.
Physically, Aσ (t) describes the internal dynamics; Bσ (t) the effect
of the controlled input on the state; and Cσ (t), Eσ (t) describe the
sensors.

Definition 2.1 ([2]). A system is externally stable (or L2 stable) if,
for every u ∈ L2([0, ∞); Rm), the output y is in L2([0, ∞); Rp). (Here
y is the zero-state output.)

Definition 2.2 ([2]). The L2 gain of an externally stable system
is γ = supu∈L2,u̸=θ

∥y∥L2
∥u∥L2

. (Here θ indicates the zero function.) The
L2 gain is the maximum ratio of ∥y∥L2/∥u∥L2 .
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Definition 2.3 ([9]). For each t ≥ τ ≥ 0, let Nσ (t, τ ) denote the
number of discontinuities of σ over (τ , t),

Nσ (t, τ ) ≤ N0 +
t − τ

Ta
, (2)

for given N0, Ta. The constant Ta is called the average dwell time
and N0 the chatter bound.

The ‘‘average dwell time’’ is an important concept for switching
systems, and has been used in many control problems, e.g. distur-
bance attenuation [5], L2 gain analysis [6] and weighted H∞ model
reduction [7]. However, because (2) is a one-direction inequality,
a weighted term e−αs cannot be canceled when applying (2) to
prove the L2 norm inequality for these control problems. So in these
literatures, authors had to adopt the weighted L2 norm. We shall
demonstrate this dilemma in Remark 3.1. In order to overcome
this difficulty (derive a two-direction inequality with regard to
Nσ (t, τ )), we propose definitions of themaximum,minimumdwell
time as follows.

Definition 2.4. The maximum dwell time of a switching system
is Tmax = supk=1,2,...(tk − tk−1); the minimum dwell time of a
switching system is Tmin = infk=1,2,...(tk − tk−1).

Note that the definition above is only for those systems with
finite maximum dwell time and nonzero minimum dwell time.

Lemma 2.1. For any t ≥ τ ≥ t0,
t − τ

Tmax
− 1 ≤ Nσ (t, τ ) ≤

t − τ

Tmin
+ 1, (3)

where Tmax, Tmin are the maximum and minimum dwell time of
system (1).

Proof. Without loss of generality, assume that t ∈ (tk−1, tk], k =

1, 2, . . ., then prove through two different cases: t ∈ (tk−1, tk) and
t = tk.

Case t ∈ (tk−1, tk): τ ∈ (ti−2, ti−1), τ = ti−1 or τ ∈ (tk−1, t],
i = 2, 3, . . . , k. If τ ∈ (ti−2, ti−1), then Nσ (t, τ ) = k− i+ 1, t − τ ≤

Tmax[Nσ (t, τ ) + 1] and t−τ
Tmin

≥ Nσ (t, τ ) − 1 such that (3) holds. If
τ = ti−1, then Nσ (t, τ ) = k − i, t − τ ≤ Tmax[Nσ (t, τ ) + 1] and
t−τ
Tmin

≥ Nσ (t, τ ) such that (3) holds. If τ ∈ (tk−1, t], Nσ (t, τ ) = 0,
t − τ ≤ Tmax and t−τ

Tmin
≥ 0 such that (3) holds.

Case t = tk: τ ∈ (ti−2, ti−1), τ = ti−1, τ ∈ (tk−1, tk), or
τ = tk, i = 2, 3, . . . , k. If τ ∈ (ti−2, ti−1), Nσ (t, τ ) = k − i + 2,
t − τ ≤ TmaxNσ (t, τ ) and t−τ

Tmin
≥ Nσ (t, τ ) − 1 such that (3) holds.

If τ = ti−1, then Nσ (t, τ ) = k − i + 1, t − τ ≤ TmaxNσ (t, τ ) and
t−τ
Tmin

≥ Nσ (t, τ ) such that (3) holds. If τ ∈ (tk−1, tk), Nσ (t, τ ) = 1,
t − τ ≤ Tmax and t−τ

Tmin
≥ 0 such that (3) holds. If τ = tk, then

Nσ (t, τ ) = 1 and t − τ = 0 such that (3) holds.
Therefore, (3) always holds. □

As we see, (3) is two-direction, and will be applied to prove
the normal (instead of weighted) L2 norm inequality for external
stability, see (16)–(20).

3. Main results

In this section, we first prove the external stability of switching
control systems consisting of Hurwitz stable subsystems by using
relation (3). In order to show the external stability of switching
control systems containing Hurwitz unstable subsystems, we pro-
pose a switching law and prove it to be realizable. Given this
switching law and applying the relation (3), we finally show the
switching control systems comprised of both Hurwitz stable and
Hurwitz unstable subsystems to be externally stable.

Theorem 3.1. For the given scalars α > 0, µ > 0 and the numbers
of any two consecutive subsystems i, j ∈ P (σ jumps from j to i), the
control system (1) is externally stable with a L2 gain γ , if there exist
real n × n matrices Pi, Pj > 0 such that⎡⎣AT

i Pi + PiAi + αPi PiBi CT
i

∗ −𭟋2
µI ET

i
∗ ∗ −I

⎤⎦ < 0, (4)

Pi ≤ µPj (5)

and

α >
lnµ

Tmin
, (6)

where 𭟋µ =
γ

µ

√
α−lnµ/Tmin
α−lnµ/Tmax

if µ > 1; 𭟋µ = γ if µ = 1;

𭟋µ = γµ

√
α−lnµ/Tmax
α−lnµ/Tmin

if 0 < µ < 1, Tmax, Tmin are the maximum
and minimum dwell time of system (1), respectively.

Proof. Consider the following piecewise quadratic Lyapunov func-
tion candidate

Vσ (t)(x) = xTPσ (t)x. (7)

Suppose σ (t) = i for t ∈ [tk−1, tk), then the derivative of Vσ (t)(x)
with respect to t along the trajectory of (1) on [tk−1, tk) is

V̇σ (t)(t) = V̇i(t)
= xT (t)(AT

i Pi + PiAi)x(t) + uT (t)BT
i Pix(t)

+ xT (t)PiBiu(t).
(8)

Let ∆(t) = yT (t)y(t) − 𭟋2
µu

T (t)u(t), then we have

V̇i(t) + αVi(t) + ∆(t)
= xT (t)(AT

i Pi + PiAi)x(t) + uT (t)BT
i Pix(t)

+ xT (t)PiBiu(t) + αxT (t)Pix(t) + xT (t)CT
i Cix(t)

+ xT (t)CT
i Eiu(t) + uT (t)ET

i Cix(t) + uT (t)ET
i Eiu(t)

−𭟋2
µu

T (t)u(t)

= η(t)T
[
AT
i Pi + PiAi + αPi + CT

i Ci PiBi + CT
i Ei

∗ ET
i Ei − 𭟋2

µI

]
η(t),

(9)

where η(t) = [xT (t), uT (t)]T . Applying the Schur complement [10],
(4) implies

V̇i(t) + αVi(t) + ∆(t) ≤ 0. (10)

Since x(t) is continuous on [tk−1, tk) due to u(t) ∈ L2([0, ∞); Rm)
(u(t) is piecewise continuous), Vi(t) is continuous on [tk−1, tk).
In view of the derivative of Vi(t) in (8), V̇i(t) is also piecewise
continuous on [tk−1, tk). Thus, integrating the inequality above,
from tk−1 to t , t ∈ [tk−1, tk), yields

Vi(t) ≤ Vi(tk−1)e−α(t−tk−1) −

∫ t

tk−1

∆(s)e−α(t−s) ds. (11)

Since subsystem i and subsystem j are consecutive (σ jumps from
j to i), it follows from (5) that

Vi(tk−1) ≤ µVj(t−k−1). (12)

Apply the technique in (2.7) of [5] as following

Vi(t) ≤ µVj(t−k−1)e
−α(t−tk−1) −

∫ t

tk−1

∆(s)e−α(t−s) ds

≤ µ[Vj(tk−2)e−α(tk−1−tk−2) −

∫ tk−1

tk−2

∆(s)e−α(tk−1−s) ds]e−α(t−tk−1)

−

∫ t

tk−1

∆(s)e−α(t−s) ds

≤ · · ·
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