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a b s t r a c t 

There is an urgent need to refine strategies for testing the safety of chemical compounds. This need 

arises both from the financial and ethical costs of animal tests, but also from the opportunities presented 

by new in-vitro and in-silico alternatives. Here we explore the mathematical theory underpinning the 

formulation of optimal testing strategies in toxicology. We show how the costs and imprecisions of the 

various tests, and the variability in exposures and responses of individuals, can be assembled rationally to 

form a Markov Decision Problem. We compute the corresponding optimal policies using well developed 

theory based on Dynamic Programming, thereby identifying and overcoming some methodological and 

logical inconsistencies which may exist in the current toxicological testing. By illustrating our methods 

for two simple but readily generalisable examples we show how so-called integrated testing strategies, 

where information of different precisions from different sources is combined and where different initial 

test outcomes lead to different sets of future tests, can arise naturally as optimal policies. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Notions of what society deems to be an acceptable testing 

regime for new chemicals are in a constant state of flux. Un- 

til 1999 it was acceptable in the EU to perform tests on guinea 

pigs in order to determine whether certain cosmetic products were 

hazardous for human skin [20] . After 1999 this was replaced by 

the mouse LLNA (Local Lymph Node Assay), another animal-based 

method. More recently the EU ethical climate has changed again; 

by 2018 no new chemical to be used in the cosmetics industry can 

be tested on animals. Instead, chemicals need to be classified reli- 

ably using information from emerging in-vitro and in-silico assays, 

supplemented where possible by mathematical models. These new 

methods are likely to be less accurate than in-vivo tests, but are 

generally cheaper and less ethically problematic to implement. This 

presents a problem common across toxicology in general: can we 

make good predictions about the risks associated with new chemi- 

cals without using animals at all? In other words, how best can we 
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assemble uncertain information based on non-animal assays, so as 

to arrive at optimal ethical testing regimes? 

Many important papers have emerged on this topic [9-14,17] . 

Indeed [10] develops a theory that determines the optimal ex- 

posure level of any particular member of the population to the 

chemical and uses this theory to solve a decision problem of how 

to pick which chemical to test for hazard first from some finite set 

of possible chemicals. [9] develops a framework allowing one to 

compute the optimal battery of tests to assess a generic toxicolog- 

ical endpoint by means of a cost effectiveness analysis (CEA). By 

contrast, [11] develops a framework in which adaptive cost sen- 

sitive Integrated Testing Strategies can be derived by means of a 

Value of Information technique (VOI). The authors there distin- 

guish between decision problems for competitive businesses and 

regulators. Furthermore, [13] begins by improving and generalising 

previous work [12,14] by developing more accurate potency class 

predictions of skin sensitisation potential of chemicals via theory 

of Bayesian Networks and then uses these results together with 

VOI framework to derive Optimal Integrated Testing Strategies for 

the assessment of chemical hazard of chemicals. Finally, similar to 

[9,11,17] uses CEA in the context of performing a cost effectiveness 

analysis in the special case of acute oral toxicity. 

However, none of these explicitly accounts for the individual 

differences between humans both in the exposure (i.e. environ- 
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mental variability) and in the toxicity corresponding caused by 

that exposure (i.e. individual variability). To be more specific, only 

[10] introduces a concept of toxicity formally but treats it as con- 

stant for all members of the population. Moreover, none of these 

papers combines these with the financial costs of chemical risk 

classification in a mathematically rigorous fashion. 

Any new testing strategy must be able to deal rationally with 

contradictory evidence. For example, one in-vitro assay may pre- 

dict that certain chemical is a skin sensitiser, while another in- 

silico assay may predict that the same chemical is actually safe. 

The classification part of the argument in [24] deals with this prob- 

lem using a combination of majority voting and Bayesian Statistics 

[14] . proposes assembling a Bayesian Network and combines this 

with the Weight-of-Evidence approach to overcome this issue [23] . 

proposes a strategy of “averaging probabilities”, using empirical es- 

timates of precision of each assay and then averaging these out in 

one “meta-assay”. Each of these solutions may be pragmatic and 

defendable within the authors’ given problem, but an over-arching 

logical framework would be a helpful step in confirming the value 

and risk associated with the removal of animal tests. 

In what follows we shall propose a mathematical framework 

which seeks to simultaneously overcome the shortcomings men- 

tioned above. The issues of imprecision, and of environment- and 

individual-level variability, fall naturally within theories developed 

for evolutionary ecology [6] . The efficient assimilation of evidence 

can then be handled by well-developed theories of Markov Deci- 

sion Processes [4] . 

We finish this chapter by surveying previous work in Toxicology 

and Medicine that is based on this mathematical theory. To the 

best of our knowledge very little work in Toxicology uses Markov 

Decision Processes, to be more precise, these are the works of 

[5,15] is a rich summary of techniques used in contemporary in 

house pharmacological research and decision making illustrated 

with numerous examples. 

Among a vast range of mathematical and computational tech- 

niques used are the Markov Decision Processes as applied to the 

optimal decision making of a pharmaceutical business on whether 

to proceed from earlier (Phase 1 clinical trial) to later (Phases 2 

and 3 of clinical trials) stages. Our work generalises this work in a 

number of directions. Firstly, the models in [5] are developed for 

the sake of a making a commercial business more profitable and 

do not take into account the regulatory aspect of Toxicology, i.e. 

the fact that the company may actually incur fines from regulatory 

bodies and lawsuits from individual consumers in case they exhibit 

adverse outcomes as a consequence of using the drug. The Markov 

Decision Process model in this paper takes this into account via 

the mechanisms of misclassification costs: in case the company 

declares an unsafe chemical as safe there will be serious conse- 

quences. Equally, if the company actually declares a safe chemical 

as unsafe it will lose money by not selling the safe product in the 

market for which it possibly had an advantage over its competi- 

tors. Thus our work bridges the two worlds: it allows the com- 

pany to maximise its profits while simultaneously acts in the best 

interest of the general public. Secondly, [5] does not take neither 

variable exposure to chemical among different members of the tar- 

get population nor precision of measurements used to test safety 

in the account. Instead, it relies on toxicity levels observed in re- 

cently tested chemicals to draw conclusions on the new chemical 

of interest while the transition probabilities of the Markov Decision 

Model model are estimated from historical data and power calcula- 

tions which, by nature, cannot guarantee precisions of estimates in 

advance in the case of unknown moments. Another problem with 

this approach is that there is no guarantee the new chemical will 

share toxicity thresholds with the previously used chemicals. 

These issues motivate the truly novel part of the methodolog- 

ical work presented in this paper which is applicable in a gen- 

eral setting not necessarily restricted to Toxicology and Medicine. 

Namely, the transition probabilities between states of the Markov 

Decision Process in this paper are based on the idea of integrat- 

ing evidence from different measurements of the same quantity in 

a non-contradictory way by using the information on the preci- 

sion from the instruments/assays used in the process. Knowing the 

value obtained in a less accurate measurement and its precision 

we can get a probability distribution on the values more accurate 

measurement of the same quantity can possibly take. This sim- 

ple observation has far reaching consequences; namely since the 

states of the Markov Decision Process in our model are the collec- 

tion of measurements the above allows for a logically sound way 

of defining transition probabilities of the model by first performing 

cheapest possible tests for each parameter of interest. This proce- 

dure is justified by the existence of devices of varying precision 

in many fields of human work. As far as Toxicology is concerned, 

this corresponds to in-vivo, in-vitro and in-silico tests. By choos- 

ing to start our analysis with a cheap in-silico test we remedy the 

problem outlined above: indeed we get the transition probabilities 

of the model without having to resort to further unknown charac- 

teristics of the chemical therefore bypassing a potentially circular 

argument. 

Another interesting work involving Markov Decision Process in 

Toxicology is a theoretical paper of [15] . The authors approach the 

problem of model checking for a Markov Decision Process from the 

Computer Science point of view using the language of Mathemat- 

ical Logic; actually as it turns out, the authors do not work with 

a conventional probabilstic definition of a Markov Decision Pro- 

cess but define their own in another set-up. Although motivated 

by an example of Insulin compartment model the paper soon drifts 

into proving results in Mathematical Logic and holds little practical 

value. 

When it comes to applications in Medicine the literature is 

much larger. We discuss in detail a variety of different applications 

[1,2,8,16,18,21,22] . As mentioned in the above, the main novelty of 

this paper, logically consistent aggregation of evidence from differ- 

ent measurements in a non-contradictory way and without a need 

to resort to empirical estimates still stands. 

[8] develops a general framework for learning efficient ap- 

proaches to medical diagnosis. It resembles this manuscript and 

[3] in the sense that the states are cumulative history of observa- 

tions, which in turn, guarantees the Markovian nature of the pro- 

cess but it resorts to the empirical estimates of transition probabil- 

ities between states based on observed frequencies [16] . develops a 

discrete time, but unlike this paper, an infinite-horizon Markov De- 

cision Process to maximise the patient’s quality-adjusted life years 

prior to them having either a stroke or developing a Coronary 

Heart Disease. The infinite horizon is justified by the large num- 

ber of visits to the doctor by Type 2 Diabetes patients. The model 

resembles the one of ours in that it has a terminal state which in 

turn insures convergence. Finally, transition probabilities are com- 

puted as a combination of equations based on medical knowledge 

and empirical observations. 

[21] develops a Markov Decision Process that aims to maximise 

the expected lifetime or quality-adjusted life years. Similarly to 

[16] this model contains an absorbing state which can be reached 

from any other state and is an infinite-horizon problem for the 

same reason as [16] . Furthermore, exactly as [16] , the rewards in 

the problem are not measured only in monetary units as in our 

case but instead in the units of Health Economics, namely quality- 

adjusted life years, while the transition probabilities of the model 

are estimated empirically from data [1] . develops a Markov Deci- 

sion Process for optimal choice of when to go for a liver transplant 

and then, furthermore, should one accept the part of a liver of a 

living-donor or the entire cadaveric liver. 
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