An online nonlinear identification method for estimation of magnetizing curve and parameters of an induction motor

Yashar Kouhi * Jana Kertzscher **

* Technische Universität Bergakademie Freiberg, Institut für Elektrotechnik, Bernhard-von-Cotta-Str. 4, 09599 Freiberg, Germany (e-mail: Kouhi@et.tu-freiberg.de).

** Technische Universität Bergakademie Freiberg, Institut für Elektrotechnik, Bernhard-von-Cotta-Str. 4, 09599 Freiberg, Germany (e-mail: Jana.Kertzscher@et.tu-freiberg.de)

Abstract: A new method for the online parameter identification of an induction machine in standstill is proposed. In this approach the inverse of the mutual reacance of the induction motor is modeled by a simple polynomial of the magnetizing flux. Then, the unknown parameters are computed by employing the nonlinear recursive least square method. The identified parameters are particularly useful for field oriented control of the induction motor.

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Nonlinear system identification; Recursive identification; Systems with saturation; Induction motor parameters; Modeling and simulation of power systems; Electric machines.

1. INTRODUCTION

Parameter identification is a fundamental step for modeling dynamical behaviors and control of squirrel cage asynchronous motors, the most common type of motors in industry. More precisely, the accurate values of the motor parameters are required for all components of the field oriented control, such as the decoupling part and the rotor flux estimator, etc. Lack of this knowledge may significantly reduce the control performance and in the worst case scenario even cause instability of the closed loop system under control. For these reasons, developing appropriate identification methods which also consider the variation of motor parameters and their dependence to the measured variables are very crucial for a control design; see Toliyat et al. (2003) and the references therein.

The primary approaches for identifying the motor parameters were based on experimental tests, such as locked rotor and no load tests. Despite their simplicity, computation of the variables are achieved offline and thus does not take variation of the parameters during the operation into account. As alternatives to the experimental approaches, algorithms based on the linear Recursive Least Square (RLS) methods have been introduced which estimate the parameters from the measured signals and the errors between the measured and estimated variables; see for example Kertzscher (2003); Zhang et al. (2015); Koubaa (2004). These algorithms are executed online and are able to track the parameters under mild physical changes. The major drawback is that the RLS algorithms assume that the motor parameters vary slowly with respect to time, that is, their time derivatives are approximately zero. This assumption fails, however, for example for the mutual reac-

* Research by Y. Kouhi has been supported by the Federal Ministry for Economic Affairs and Energy under Project no. 01MY14007A.

** Research by Y. Kouhi has been supported by the Federal Ministry for Economic Affairs and Energy under Project no. 01MY14007A.
2. MODEL OF A SQUIRREL CAGE INDUCTION MACHINE IN STATOR COORDINATE FRAME IN PER-UNIT SYSTEM

The model of a squirrel cage induction machine in stator reference frame \((\alpha, j\beta)\) and in per-unit system is expressed by

\[
\begin{align*}
\frac{1}{\omega_b} \frac{d\Psi_s}{dt} &= u_s - R_s i_s, \quad (1) \\
\frac{1}{\omega_b} \frac{d\Psi_r}{dt} &= -R_i i_r + j\omega\Psi_r, \quad (2) \\
\Psi_s &= X_s i_s + X_m i_r, \quad (3) \\
\Psi_r &= X_m i_s + X_i i_r, \quad (4)
\end{align*}
\]

where \(R_s\) and \(R_r\) represent the stator and the rotor resistances, respectively, \(\omega\) represents the angular velocity of the rotational field. The vectors \(\Psi_s = [\psi_{s\alpha}, \psi_{s\beta}]^T\) and \(\Psi_r = [\psi_{r\alpha}, \psi_{r\beta}]^T\) represent the stator and the rotor fluxes, whereas the vectors \(i_s = [i_{s\alpha}, i_{s\beta}]^T\) and \(i_r = [i_{r\alpha}, i_{r\beta}]^T\) are the currents of the stator and the rotor, respectively. \(u_s = [u_{s\alpha}, u_{s\beta}]^T\) is the vector whose elements are the voltages of the stator. The base frequency \(\omega_b\) is a constant defined by \(\omega_b := 2\pi f_1\), where \(f_1\) is the nominal frequency of the induction motor. \(X_s\) and \(X_r\) are the stator and the rotor reactances, respectively. They are defined by \(X_s = X_m + X_{\sigma s}\) and \(X_r = X_m + X_{\sigma r}\), where \(X_m\) is the mutual (magnetizing) reactance and \(X_{\sigma s}\) and \(X_{\sigma r}\) are the phase leakage reactances of the stator and the rotor, respectively. Note that in this demonstration all variables except the time variable \(t\) are normalized by their corresponding base variables.

The torque and the rotational speed of the rotor are related through the mechanical equation:

\[
\tau_e - \tau_L = T_A \frac{dn}{dt}, \quad (5)
\]

where \(\tau_e = \psi_{s\alpha} i_{s\beta} - \psi_{s\beta} i_{s\alpha}\) and \(\tau_L\) represent the electrical and mechanical (load) torques, respectively. The time constant \(T_A\) is defined by \(T_A = J\omega_b^2/(3U_n I_n p^2)\), where in this expression \(p\) refers to the number of pole pairs of the stator, \(J\) is the moment of inertia, and \(U_n\) and \(I_n\) are the nominal voltage and current, respectively. \(n\) represents the angular velocity of the rotor.

Fig. 1. Illustration of the dependencies: magnetizing flux-current (left) and magnetizing flux-reactance (right).

In this model we assume that the mutual reactance \(X_m\) depends on the magnetizing flux \(\Psi_m\); see the illustrative diagrams in Fig.1. Similar to the proposed technique in Levi et al. (2000), we describe this relationship by a nonlinear function according to:

\[
\begin{align*}
X_m &= \frac{\|\Psi_m\|}{\|i_m\|} = \frac{X_{m,s}}{1 + a\|\Psi_m\|^b} = \frac{X_{m,s} - X_{m,d}}{1 + a\|\Psi_m\|^b} = X_{m,s} - X_{m,d}, \quad (6)
\end{align*}
\]

where \(X_{m,s}\) and \(X_{m,d} := X_{m,s} a\|\Psi_m\|^b (1 + a\|\Psi_m\|^b)^{-1}\) indicate the static and dynamic parts of the mutual inductance, respectively. The parameter \(a \in \mathbb{R}_{>0}\) is a constant number, \(b \in \{1, 2, \ldots\}\) is a fixed number that a priori has been chosen, \(\Psi_m = X_{m,s} i_m - X_{m,d} i_r\) and \(i_m = i_s + i_r\). The operator \(\|\|\) denotes the norm 2 of a signal. The interpretation of (6) is that for small magnitude of the magnetizing flux the mutual reactance almost remains constant, whereas for higher values due to the effect of saturation this reactance reduces. It follows from \(\Psi_m = X_m i_m\) and (6) that the following relationship between the magnetizing flux and current is valid

\[
i_m = \frac{\Psi_m}{X_{m,s}} (1 + a\|\Psi_m\|^b). \quad (7)
\]

Characterizing the magnetizing curve is usually achieved offline by carrying out a practical experiment called no-load test; see Levi et al. (2000). In this work we aim at determining the unknown variables by the NLRLS algorithm.

3. PARAMETER IDENTIFICATION IN STANDSTILL

In this section we suggest the identification method in standstill. To begin, we assume that the stator resistance \(R_s\) is measurable and thus a known parameter. This implies that referring to (1) the stator flux \(\Psi_s\) is computable and can be treated as a measurable signal. Moreover, we use the common assumption that the total leakage reactance of the motor is equally divided between the rotor and the stator, that is, \(X_{\sigma s} = X_{\sigma r}\); see Yamamura (1986). This also implies that the reactances of the stator \(X_s\) and the rotor \(X_r\) are equal, that is \(X_{\sigma s} = X_{\sigma r}\). Next, note that (2) can be simplified if the rotor angular frequency \(\omega\) somehow is set to zero. This can be achieved by a convenient selection of the excitation voltage signal, for instance by a signal in the direction of \(\alpha\)-axis. As the rotor flux and current are not measurable, the proposed model for parameter identification must be independent of these variables.

In summary, the identification in standstill consists of three parts: i) excitation of the motor by an appropriate
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات