
JID:YJDEQ AID:8925 /FLA [m1+; v1.268; Prn:10/08/2017; 11:38] P.1 (1-33)

Available online at www.sciencedirect.com

ScienceDirect

J. Differential Equations ••• (••••) •••–•••
www.elsevier.com/locate/jde

A stability criterion for non-degenerate equilibrium 

states of completely integrable systems
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Abstract

We provide a criterion in order to decide the stability of non-degenerate equilibrium states of completely 
integrable systems. More precisely, given a Hamilton–Poisson realization of a completely integrable sys-
tem generated by a smooth n-dimensional vector field, X, and a non-degenerate regular (in the Poisson 
sense) equilibrium state, xe, we define a scalar quantity, IX(xe), whose sign determines the stability of the 
equilibrium. Moreover, if IX(xe) > 0, then around xe, there exist one-parameter families of periodic orbits 
shrinking to {xe}, whose periods approach 2π/

√
IX(xe) as the parameter goes to zero. The theoretical 

results are illustrated in the case of the Rikitake dynamical system.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

The aim of this article is to provide a criterion in order to decide the stability of non-
degenerate equilibrium states of completely integrable systems. More precisely, given a Hamil-
tonian realization (of Poisson type) of a completely integrable system generated by a smooth 
n-dimensional vector field, X, and a non-degenerate regular (in the Poisson sense) equilib-
rium state, xe, we define a scalar quantity, IX(xe), whose sign determines the stability of xe, 
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i.e., if IX(xe) > 0 then xe is Lyapunov stable, whereas if IX(xe) < 0 then xe is unstable. 
Moreover, as the characteristic polynomial of the linearization of X at xe, LX(xe), is given 
by pLX(xe)

(μ) = (−μ)n−2 · (μ2 + IX(xe)
)
, it follows that IX(xe) depends only on X and xe , 

and not on the Hamiltonian realization. Also, if we denote by �xe , the symplectic leaf (passing 
through xe) of the Poisson configuration manifold of the Hamiltonian realization, then the sign of 
IX(xe) determines again the stability of xe, this time regarded as an equilibrium state of the re-
stricted vector field X|�xe

. Moreover, if IX(xe) > 0, then there exists ε0 > 0 and a one-parameter 
family of periodic orbits of X|�xe

(and hence of X too), {γε}0<ε≤ε0
⊂ �xe , that shrink to {xe}

as ε → 0, with periods Tε → 2π√
IX(xe)

as ε → 0. Also, the set {xe} ∪⋃
0<ε<ε0

γε represents the 
connected component of �xe \ γε0 , which contains the equilibrium point xe . Note that by choos-
ing a different Hamiltonian realization of the completely integrable system, for which xe is also 
a non-degenerate regular equilibrium point, we obtain the existence of a different family of peri-
odic orbits with the same properties, this time the orbits being located on the regular symplectic 
leaf (passing through xe) corresponding to the Poisson configuration manifold associated to this 
specific Hamiltonian realization. On the applicative level, all theoretical results are illustrated in 
the case of the Rikitake dynamical system.

More precisely, the structure of the article is the following: the second section presents the 
geometry associated to a general completely integrable system. More precisely, using the prop-
erty that any completely integrable system admits Hamiltonian realizations of Poisson type, we 
illustrate the associated Poisson geometry, and its relations with the dynamics generated by the 
system. The aim of the third section is to characterize the set of equilibrium states of a general 
completely integrable system, and also to analyze the geometric and analytic properties of certain 
subsets of equilibria, naturally associated with the Poisson geometry of the Hamiltonian realiza-
tions of the system. In fourth section of the article we define the scalar quantity IX(xe), and 
analyze its main geometric and analytic properties. The fifth section is the main part of this arti-
cle and contains the main result, which provides a criterion to test the stability of non-degenerate 
regular equilibrium states of Hamiltonian realizations of completely integrable systems. The aim 
of the sixth section is to give a criterion to decide leafwise stability of non-degenerate regular 
equilibria of Hamiltonian realizations of completely integrable systems, and also to study the 
local existence of periodic orbits. In the last section, we illustrate the main theoretical results in 
the case of a concrete example coming from geophysics, namely, the so called Rikitake two-disc 
dynamo system.

2. A geometric formulation of completely integrable systems

The aim of this section is to present the geometry associated to a general completely integrable 
system. More precisely, using the property that any completely integrable system admits Hamil-
tonian realizations of Poisson type (see e.g., [12]), we illustrate the associated Poisson geometry, 
and its relations with the dynamics generated by the system.

In order to do that, let us start by recalling from [12] the Hamiltonian realization procedure of 
a completely integrable system. For similar Hamilton–Poisson and respectively Nambu–Poisson 
formulations of completely integrable systems, see e.g., [1], [6], [7], [11], [9].

Recall that a completely integrable system is a C∞ differential system defined on an open 
subset � ⊆Rn,
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