
ARTICLE IN PRESS

JID: SYSARC [m5G; December 22, 2016;0:12]

Journal of Systems Architecture 0 0 0 (2016) 1–16

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Using design space exploration for finding schedules with guaranteed

reaction times of synchronous programs on multi-core architecture

Zhenmin Li a , ∗, Heejong Park

a , Avinash Malik

a , Kevin I-Kai Wang

a , Zoran Salcic

a ,
Boris Kuzmin

b , Michael Glaß b , Jürgen Teich

b

a University of Auckland, Auckland, New Zealand
b University of Erlangen-Nuremberg, Erlangen, Germany

a r t i c l e i n f o

Article history:

Received 31 March 2016

Revised 13 September 2016

Accepted 15 December 2016

Available online xxx

Keywords:

Synchronous program

SystemJ

Guaranteed reaction time

Design space exploration

Evolutionary algorithm

Scheduling

Multi-core architecture

a b s t r a c t

The synchronous model of computation is well suited for real-time systems, because it allows static anal-

ysis in order to find and guarantee their reaction times. Today’s multi-core systems are becoming the pre-

dominant computing platforms. Synchronous programs are typically compiled into single threaded code,

which makes them unsuitable for exploiting parallelism of the multi-core platforms. Moreover, static tim-

ing analysis becomes highly intractable for multi-core systems. This article proposes a novel methodology

that aims at finding the mapping and schedule of synchronous programs that guarantees, statically, reac-

tion times when mapped onto a multi-core system consisting of two types of time-predictable cores. The

proposed methodology combines design space exploration based on evolutionary algorithm and schedul-

ing of parts of synchronous programs. It allows minimizing the resource usage in terms of number of

cores by finding the mapping and schedule with the guaranteed reaction time for architectures with dif-

ferent number of cores. In particular, we: (a) transform a synchronous program written in synchronous

SystemJ to a graph-based model represented with two types of computation nodes suitable for execution

on two types of time-predictable cores, (b) perform mapping of computation nodes on a customizable

multi-core platform using genetic operations, and (c) generate a resulting static schedule of computa-

tion nodes for each mapping as part of the design space exploration. The design flow, from program

specification and node mapping to the design space exploration and multi-core scheduling is completely

automated.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The synchronous approach is widely adopted in the design and

verification of real-time embedded applications, especially safety-

critical systems [1] . Real-time embedded systems are typically

implemented as reactive systems that react continuously to in-

put events from the environment by producing appropriate out-

put events in a timely manner. Reactive systems require both

functional correctness with respect to input/output specifications

and temporal correctness regarding timing constraints. The syn-

chronous approach, embodied in synchronous languages such as

Signal [2] , Lustre [3] and Esterel [4] , supports determinism and

concurrency, which are the two essential traits of reactive systems.

Both Signal and Lustre are declarative and belong to the family of

∗ Corresponding author:

E-mail addresses: zli133@aucklanduni.ac.nz (Z. Li), hpar081@aucklanduni.ac.nz

(H. Park), avinash.malik@auckland.ac.nz (A. Malik), kevin.wang@auckland.ac.nz

(K.I.-K. Wang), z.salcic@auckland.ac.nz (Z. Salcic), boriskuzmin@gmx.de (B. Kuzmin),

glass@cs.fau.de (M. Glaß), teich@cs.fau.de (J. Teich).

data-flow languages. The Esterel language is imperative and suit-

able for modeling control-dominated systems [5] . These languages

are based on a formal Model of Computation (MoC), which relies on

the synchrony hypothesis [6] . The synchronous languages based on

a formal MoC are amenable not only for functional verification, but

also static program analysis for guaranteeing real-time properties

of the applications [4,7] . However, they have poor capabilities for

data handling. The synchronous subset of the Globally Asynchronous

Locally Synchronous (GALS) language SystemJ [8] extends Esterel

concepts with Java, which significantly enhances data-dominated

computations and is used as a design and specification language

in our case.

The main feature of the synchronous approach is the introduc-

tion of a logical clock, which divides the execution of all syn-

chronous concurrent behaviors (called reactions in SystemJ) of a

program into discrete instants, called ticks . Every synchronous pro-

gram accepts inputs from the environment at the start of a tick and

is assumed to respond in zero time , producing outputs as necessary

[4] . However, computation always consumes real physical time,

which depends on the nature of the computation and the speed

http://dx.doi.org/10.1016/j.sysarc.2016.12.003

1383-7621/© 2016 Elsevier B.V. All rights reserved.

Please cite this article as: Z. Li et al., Using design space exploration for finding schedules with guaranteed reaction times of synchronous

programs on multi-core architecture, Journal of Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.12.003

http://dx.doi.org/10.1016/j.sysarc.2016.12.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
mailto:zli133@aucklanduni.ac.nz
mailto:hpar081@aucklanduni.ac.nz
mailto:avinash.malik@auckland.ac.nz
mailto:kevin.wang@auckland.ac.nz
mailto:z.salcic@auckland.ac.nz
mailto:boriskuzmin@gmx.de
mailto:glass@cs.fau.de
mailto:teich@cs.fau.de
http://dx.doi.org/10.1016/j.sysarc.2016.12.003
http://dx.doi.org/10.1016/j.sysarc.2016.12.003

2 Z. Li et al. / Journal of Systems Architecture 0 0 0 (2016) 1–16

ARTICLE IN PRESS

JID: SYSARC [m5G; December 22, 2016;0:12]

of the underlying execution platform. All reactions must complete

their computations that correspond to one tick in order to move to

the next tick. The time interval between beginnings of two consec-

utive ticks is typically called the reaction time . The longest possible

reaction time, which ensures that no input event from the envi-

ronment is missed, if it can be determined, is called the Worst Case

Reaction Time (WCRT) of a synchronous program [9] . Statically de-

termining the WCRT of the program is crucial to real-time systems

designed using the synchronous programming languages.

Given a synchronous program, calculation of the WCRT always

trades off the analysis time against the tightness of the result. The

challenge of finding a tight WCRT on a single core itself cannot

be underestimated, as it involves both program analysis and anal-

ysis of micro-architectural features of the platform it will be ex-

ecuted on [7,10,11] . The latter is becoming more intricate due to

the highly unpredictable nature of today’s general purpose proces-

sors used in real-time applications [12] . This realization has re-

cently prompted the design of time-predictable processor architec-

tures that are amenable to real-time analysis, such as PRET-ARM

[13] and Java Optimized Processor (JOP) [14] .

Due to the growing performance requirements of the real-time

embedded applications and the performance limitation of a single-

core platform, using multiple processing elements (PEs) becomes a

logical choice to exploit parallelisms in synchronous programs in

order to find as short as possible WCRT. Statically determining the

WCRT becomes very challenging for such multi-core systems due

to interference of execution caused by thread scheduling, cache or-

ganization and replacement policy [15] . The state-of-the-art WCRT

analysis techniques for synchronous programs on multi-core archi-

tecture isolate the mapping and scheduling problem from WCRT

analysis by assuming user-defined or pre-determined thread map-

ping and scheduling schemes [15,16] , which greatly impair the us-

ability of these techniques, as the found WCRT heavily depends on

the mapping and schedule of the program.

Because of countless feasible combinations of mapping and

schedule of program computation nodes, it is very difficult to de-

termine WCRT statically for a synchronous program on a multi-

core platform. Therefore, an alternative and viable method is to

find a reaction time which will never be exceeded during execu-

tion of the program and at the same time be as close as possible to

the WCRT, i.e., guaranteed reaction time (GRT). Due to the fact that

program mapping and scheduling are both known to be NP-hard

problems [17] , we perform design space exploration (DSE) using

an evolutionary algorithm (EA), along with a multi-core schedul-

ing algorithm capable of handling conditional branches properly, to

find a schedule with the GRT for each instance of a customizable

multi-core architecture. EA is inspired from the process of natu-

ral evolution [18] . Starting from an initial collection of candidate

solutions, the quality of each solution is evaluated, which deter-

mines the chance that it will be kept and used as the seed for

constructing further candidate solutions. Due to the inefficiency of

EAs when solving discrete constrained optimization problems, the

SAT-decoding technique utilizing a SAT solver is integrated into our

methodology in order to efficiently obtain feasible solutions during

DSE [19] . Our target architecture, consisting of two types of time-

predictable processor cores, is an efficient execution platform for

synchronous programs written in the SystemJ language.

Our contributions can be summarized as follows:

• We propose a DSE-based methodology for mapping the com-

putation nodes of synchronous programs on cores of the tar-

get execution architecture and finding the schedule that has

guaranteed reaction time. Our methodology starts with a rigor-

ous SAT formulation of feasible mappings of computation nodes

onto the multi-core platform and at the end results with a

schedule that guarantees correct program execution and reac-

tion time. The resulting schedule is generated using a novel list-

scheduling algorithm that schedules the mapped computation

nodes in order to find the GRT and is also used by the SystemJ

compiler to generate final code for each core.

• We build a fully automated and integrated design flow (frame-

work) that starts with program specification in SystemJ and

ends with the scheduled synchronous program with a known

GRT.

The remainder of this article is organized as follows. In

Section 2 , the SystemJ MoC is introduced informally, together with

the description of an example of SystemJ program and interme-

diate graph representation. The multi-core architecture, including

the time-predictable interconnect fabric, is also discussed in this

section. In Section 3 , the examples illustrating different combina-

tions of mapping and schedule are compared, which elicits the

idea behind our approach. In Section 4 , the design flow based on

our proposed methodology for finding the schedules with GRTs us-

ing DSE is given, along with the problem formulation. In addition,

the mapping constraints represented by a symbolic model encod-

ing, together with the composition of the genetic representation of

a solution used by the evolutionary algorithm, are also introduced.

Section 5 presents a multi-core scheduling algorithm employed to

evaluate the feasible mappings based on found schedules and cor-

responding reaction times. In Section 6 we present the results of

the application of the methodology to different example programs

when scheduled on the multi-core system with different numbers

of cores. The related work is discussed in Section 7 . Finally, this

article is concluded in Section 8 .

2. Preliminaries

In this section, the synchronous part of SystemJ programming

language is introduced, by an example of simple program.

2.1. SystemJ language

For program specification, we employ the synchronous subset

of the GALS language SystemJ [8] which can be considered as

an extension of Esterel [4] . In addition to reactivity and concur-

rency statements provided in Esterel, SystemJ allows interleaving

of these statements with Java, providing a powerful programming

paradigm for the description of complex systems and facilitating

both control-driven and data-driven computations. A SystemJ pro-

gram consists of one or more clock-domains (CDs), executing asyn-

chronously with each other. Each CD is a purely synchronous pro-

gram comprised of one or more concurrent entities called reactions

executing in lock-step with the logical tick. The reactions within

a CD communicate with each other through objects called signals

using a synchronous broadcast mechanism. Signals have a status

and in each logical tick signals are either present or absent. Un-

like Esterel, which uses instantaneous semantics, SystemJ uses de-

layed semantics where emitted signal presence is visible, through

the broadcast, in the next logical tick.

The synchronous SystemJ program in Fig. 1 (a) consists of three

synchronous/parallel reactions: R1, R2 and R3, composed using the

synchronous parallel operator (‖). The infinite loop in each re-

action enforces restart after termination of the current tick, due

to the pause statement at the end of the loop body. R1 con-

tains a conditional present statement that checks for presence

of signal IN1 coming from the environment. The presence of signal

IN1 leads to the execution of Java method named method11 , and

method12 is invoked if signal IN1 is absent, in each logical tick. Re-

action R2 consists of two sequential method calls, i.e., method21

and method22 , separated by an emit statement which emits lo-

cal signal temp . Reaction R3 emits output signal OUT1 to the en-

Please cite this article as: Z. Li et al., Using design space exploration for finding schedules with guaranteed reaction times of synchronous

programs on multi-core architecture, Journal of Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.12.003

http://dx.doi.org/10.1016/j.sysarc.2016.12.003

https://isiarticles.com/article/144271

