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A B S T R A C T

Vibration control systems are usually classified into: passive, active and semi-active. Semi-active control systems
are based on formerly passive mechanical devices, such as springs and dampers, whose characteristics are ad-
justed in real-time by active means. The attractiveness of semi-active control systems mainly relies on their
assumed “inherent stability”, which makes them almost as reliable and fault-tolerant as passive control systems.

The present paper shows that these assumptions are only partially true, by applying passivity formalism and
bounded-input bounded-output stability definitions. Based on this study, semi-active control devices are ra-
tionally classified into three classes with two subclasses each: (1.1) non-negative variable-damping dampers,
(1.2) possibly-negative variable-damping dampers, (2.1) independently-variable-stiffness springs, (2.2) re-
settable-stiffness springs, (3.1) independently-variable-inertance inerters, and (3.2) resettable-inertance inerters.
It is found that a control system using any of the semi-active control devices of type (1.2), (2.1) or (3.1) is not
inherently stable, as it is assumed in some previous papers; because those devices are “active” from the per-
spective of the passivity formalism. Interestingly, hybrid combinations of independently-variable-inertance in-
erters with non-negative variable-damping dampers can be designed to produce inherently-stable control sys-
tems. Following this framework, several published works on semi-active control systems are reviewed and
classified.

The presented methodology is useful when developing new devices. This is demonstrated by proposing a
novel control device, which is classified and assessed in terms of inherent passivity. Moreover, this passivity
assessment is conveniently used to propose a control law for the device. Finally, a frame structure controlled by
the device is numerically simulated through a number of scenarios including instability and a countermeasure
for its mitigation.

1. Introduction

Structural vibrations are detrimental to the performance of many
engineering applications and, therefore, several methods of vibration
control have been proposed to reduce them. These methods are gen-
erally classified into: Passive Control (PC) [1,2], Active Control (AC)
[3,4], or Semi-Active Control (SAC) [5,6]; although hybrid combina-
tions (HC) are also common [3]. In a SAC system, the properties of
formerly passive devices (e.g., viscous dampers, springs, pendula) are
conveniently adjusted in real-time through auxiliary actuators (e.g.,
valves, motors) according to a control law [7]. SAC is attractive since it
offers the reliability of PC; while approaching the adaptability and ef-
fectiveness of AC, without imposing high power demands. Furthermore,
it is common to assume that SAC systems are “inherently stable” [6].

An important benefit of “inherent stability” is a guaranteed stability
irrespectively of control-law design, modelling errors, and failures in
miscellaneous hardware of the SAC system, i.e. sensors, transmission

equipment, control computers, auxiliary actuators, and power supplies
(see Fig. 1). The fault-tolerance of these subsystems is particularly im-
portant in three cases: (1) applications that remain in standby for many
years until their operation is needed, as mitigation of seismic vulner-
ability in civil structures [8]; (2) applications under harsh environ-
ments, such as smart suspension systems for vehicles [9]; and (3) ap-
plications deployed in remote locations, such as artificial satellites and
other space structures [10]. AC systems, which are not inherently
stable, can yield a dangerously large structural response if any fault is
present in the hardware or if its design is inadequate.

An additional benefit of “inherent stability” is that researchers and
practicing engineers that are not familiar with non-linear control theory
can use and/or propose new semi-active devices without destabilization
risk. Moreover, new control laws can be proposed without stability
analysis; e.g. heuristically as in [11]. This advantage of the assumed
“inherent stability” is important since vibration control design is a
multidisciplinary task that involves not only control engineers but also
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mechanical, electronics and civil engineers.
Many investigations [6,8,12–20] appeal to the “inherent stability”

of SAC systems and justify it on the “passivity” of the devices used to
implement them; although it has also been claimed that “inherent
stability” cannot be generalized [21,22]. This inconsistency arises from
the use of ambiguous definitions. Since their introduction in the 1970s
[7], many new semi-active devices have been proposed; e.g. variable-
damping dampers [7], variable-stiffness springs [23] and, recently,
variable-inertance inerters [24,25]. As a consequence, the definition of
SAC is often adapted in order to encompass the new devices, which
leads to an increasing risk of misunderstanding.

The purpose of this paper is to clarify the definitions of “semi-ac-
tive”, “stability”, and “inherent stability”, in order to formally address
the issue of the “inherent stability of semi-active control systems”
within a general framework. The approach proposed is based on the
passivity formalism [26], as suggested by Hrovat [27] for classifying
“active” and “passive” suspension systems. Among the many available
definitions of “stability” [28], this study considers bounded-input
bounded-output (BIBO), which can be deduced from the passivity the-
orem [29] and is appropriate for systems under forced excitation. Fi-
nally, this paper denotes the stability as “inherent” when it depends
exclusively on the mechanical subsystems (the green blocks in Fig. 1) of
the controller.

2. Definitions and nomenclature

2.1. Mathematical preliminaries

In order to establish the boundedness of vector-valued functions,
such as displacements, velocities, accelerations and forces, the L2 norm
of a vector function x is defined as:

= 〈 〉x x x|| || ,2 (1)

where 〈 〉·,· , the inner product of vector functions, is defined as:

∫〈 〉 = ′
∞

x y x yt t dt, ( ) ( )
0 (2)

where ′ is the transpose operator. Note that x|| ||2 is a scalar denoting the
norm of the vector-valued function x ; which must not be confused with

= ′x t x t x t|| ( )|| ( ) ( )2 .
Similarly, the truncated inner product of x and y over the interval

T[0, ], is defined as [30]:

∫〈 〉 = ′x y x yt t dt, ( ) ( )T
T

0 (3)

where T is a particular instant of time; and the truncated L2 norm of x
as follows [30]:

= 〈 〉x x x|| || , .T T2, (4)

Thus, a function x lies in the L2 space, i.e. ∈x L2, if < ∞x|| ||2 [28].
Correspondingly, a function x lies in the extended- L2 space, i.e.
∈x L e2 , if < ∞ ∀x T|| || T2, [28].
Below, some useful inequalities are summarized [26,31]:

′ ⩽ ′ ⩽ ′A x x x Ax A x xλ t t t t λ t t( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).min max (5)

〈 〉 ⩽x y x y, || || || || .T T T2, 2, (6)

+ ⩽ +x y x y|| || || || || || .T T T2, 2, 2, (7)

where Aλ ( )min and Aλ ( )max are the smallest and largest eigenvalues of
A, Eq. (6) is the Cauchy–Bunyakovsky–Schwarz (CBS) inequality, and
Eq. (7) is the triangle inequality.

From the perspective of vibration control engineering, L2 norm
(||·||2) measures a response function in RMS sense, which is an evalua-
tion criteria commonly used in that field [32]. Other important cri-
terion is the measurement of responses in a peak sense. In this regard,
the ∞L norm and its truncated version are defined as:

=∞
∈ ∞

x x t|| || sup | ( )|
t [0, ) (8)

=∞
∈

x x t|| || sup | ( )|T
t T

,
[0, ] (9)

Thus, a function x lies in the ∞L space, i.e. ∈ ∞x L , if < ∞∞x|| || [28].
Correspondingly, a function x lies in the extended- ∞L space, i.e.
∈ ∞x L e, if < ∞ ∀∞x T|| || T, [28].

2.2. Definition of “stable”

A system is BIBO stable when the norm of the system output is finite
for any input with finite norm. Formally, a system whose input is u and
output is y is L2-stable if [28]:

∈ ⇒ ∈u yL L .2 2 (10)

Moreover, if there exists a finite constant >γ 0 such that:

∈ ⇒ ⩽u y uL γ|| || || || ,2 2 2 (11)

The system is said to be L2-stable with finite gain (γ) and zero bias.

Fig. 1. General semi-active control system.
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