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Abstract: In this paper sufficient stability conditions are established for fractional systems
with perturbed differentiation orders. It is an extension of the recently published paper Rapaić
and Malti [2016] which allows henceforth increasing the highest differentiation order. The
maximum allowable variation on all differentiation orders is computed so that the stability
(respectively instability) is preserved when differentiation orders are perturbed away from the
commensurate ones. The maximum allowable variations are compared in both cases: when the
highest order is allowed to be increased and when it is not. The established conditions allow
concluding on the stability of incommensurate fractional systems on the basis of Matignon’s
theorem and the additional sufficient condition.
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1. INTRODUCTION

One of the most used criterion for stability testing of
fractional systems is Matignon [1998] theorem. It extends
the Routh-Hurwitz criterion by testing whether system sν-
poles, where ν is the commensurate order, are located in
the sector | arg(sν)| > ν π

2 . However, when the fractional
system is incommensurate, Matignon’s theorem does no
more apply and some other criteria were developed. Most
of these criteria ultimately derive form the Cauchy’s Ar-
gument Principle, either directly like Hwang and Cheng
[2006], or indirectly, through modification of the Nyquist
Theorem, like Trigeassou et al. [2009], Sabatier et al.
[2013]. However, al of these methods are quite difficult to
implement because they require computing all the s-poles
in the complex right half plane, and carefully excluding
the branch cut lying generally on the negative real axis.

Recently, sufficient conditions for testing stability of frac-
tional incommensurate systems were established in Rapaić
and Malti [2016]. They allow concluding on the stabil-
ity (resp. instability) of incommensurate systems when a
neighboring commensurate system is stable (resp. unsta-
ble). Moreover, a conservative upper bound on the magni-
tude of the allowable variations of the differentiation orders
was determined, such that the perturbed system remains
stable (resp. unstable). However, in the aforementioned
paper, the maximum differentiation order (system order)
is not to be increased by the perturbation (the highest order
perturbation is non positive). This limitation is raised
in this paper. Henceforth, new conditions are established
allowing to have perturbations augmenting system order

(any highest order perturbation). It is expected, in the
latter case that the maximum allowable perturbation be
reduced as compared to the former.

The paper is organized as follows. First a mathematical
background is presented on fractional systems together
with Matignon’s stability theorem. Then, the main results
are presented in Section 2. The ones established recently in
Rapaić and Malti [2016] are first recalled in section 2.1 as
Theorems 3 and 5. Next, the extension allowing to handle
an increase in the highest differentiation order is presented
in Section 2.2 as Theorems 6 and 7. Numerical examples of
Section 3 show that the maximum allowable perturbation
reduces when perturbations are allowed to increase the
highest differentiation order as compared to the case when
they do not.

1.1 Mathematical background

A symbolic representation of a fractional dynamic system
governed by a fractional differential equation is given in a
transfer function form:

T (s, β)

F (s, α)
=

m
∑

j=0

bjs
βj

1 +
n
∑

i=1

aisαi

, (1)

where ai ∈ R
∗ ∀i ∈ {1, 2, . . . n}, bj ∈ R

∗ ∀j ∈ {0, 1, . . .m},
and where α = (α1, α2, . . . , αn) and β = (β0, β1, . . . , βm)
are vectors of ordered differentiation orders:

0 < α1 < α2 < . . . < αn ,
0 ≤ β0 < β1 < . . . < βm .

(2)
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Fig. 1. Contour used when applying the Rouché Theorem
in the proof of Theorem 3.
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aiǫi Ln(Rejϕ)

� 1

0

(Rejϕ)αi+tǫidt

�

�

�

�

�

≤

n
�

i=1

�

�

�

�

aiǫi(Ln(R) + j
π

2
)

� 1

0

Rαi+tǫidt

�

�

�

�

≤

n
�

i=1

|ai|ǫi|Ln(R) + j
π

2
|Rαi+τǫi

for some τ ∈ (0, 1). The last equality follows from the
Integral Mean Value Theorem Spivak [1967], since Rαi+tǫi

is continuous. Consequently, for large R, the right-hand
side of (10) is upper bounded by an expression which grows
as Ln(R)Rα, where α < αn (since τ < 1). Simultaneously,
F (s), which is the left-hand side of (10), grows as Rαn ,
and the condition (10) is fulfilled provided that R is chosen
sufficiently large. �

The sufficient condition given by the previous theorem pro-
vides region of guaranteed stability (resp. instability) with
arbitrary, problem-dependent shape: the magnitude of the
allowable perturbation depends, usually in a complex way,
on the direction of the perturbation in the parameter
space. This kind of stability (resp. instability) region is
not suitable in many cases. In the sequel, the following
function will be useful

SF (s, α, ξ) =
∂F (s, α+ ǫ)

∂ǫ

�

�

�

�

ǫ=ξ

. (12)

SF is therefore the gradient of the characteristic function
with respect to the differentiation orders, computed at
some disturbed point ξ. The following theorems give some
more conservative stability (resp. instability) regions, but
in forms which are easier to verify numerically.

Theorem 4. Let α = (α1, . . . , αn) ∈ Rn, and let

F (s, α) = 1 +
n
�

i=1

ais
αi , (13)

where 0 < α1 < . . . < αn. Let further ǫ = (ǫ1, . . . , ǫn) ∈
R

n be such that

0 < α1 + ǫ1 < . . . < αn + ǫn ≤ αn . (14)

If order perturbation ǫ satisfies

||ǫ||p ≤ min
ω>0

�

|F (jω, α)|

||SF (jω, α, ξ)||q

�

(15)

for all ξ belonging to the open line segment connecting 0
and ǫ, where p, q ∈ N∪∞ and 1

p
+ 1

q
= 1, then F (s, α) and

F (s, α + ǫ) have the same number of zeros in the closed
complex right half plane.

Proof: Assume that (15) holds. It immediately implies
that

|F (jω, α)| ≥ ||SF (jω, α, ξ)||q||ǫ||p (16)

≥ |�SF (jω, α, ξ), ǫ�| , (17)

for all ξ along the line segment connecting α and α + ǫ,
where the last inequality is the well-known Hölder inequal-
ity, and �·, ·� denotes the scalar product. By noticing that

SF (jω, α, ξ) =
�

a1(jω)
α1+ξ1 Ln(jω), . . . ,

an(jω)
αn+ξn Ln(jω)

�

,

equation (15) actually implies (10) due to the Integral
Mean Value Theorem Spivak [1967], and the claim follows
directly by application of Theorem 3. �

Theorem 4 enables computation of the upper bound on
the perturbation magnitude depending on the direction
of the perturbation. If it is of interest to find a single
upper bound, independent of the manner in which the
differentiation orders are perturbed, the following claim
(which is even more conservative) can be used.

Theorem 5. Let F , α and ǫ be as in Theorem 4. If order
perturbation ǫ satisfies

||ǫ||p ≤ ǫp,max ,

where

||ǫ||p ≤ min
ω>0

||ξ||p≤ǫp,max

�

|F (jω, α)|

||SF (jω, α, ξ)||q

�

, (18)

where p, q ∈ N ∪ ∞ and 1
p
+ 1

q
= 1, then F (s, α) and

F (s, α + ǫ) have the same number of zeros in the closed
complex right half plane.

Proof: Follows trivially from the previous Theorem 4, by
considering perturbations in all possible directions. �

Remark 1. In most cases the maximal allowable pertur-
bation is the natural measure of robustness. It therefore
seems reasonable to consider ||ǫ||∞ as the measure of
robustness. Since in this case p = ∞, q is 1 by necessity,
and therefore condition (18) reduces to

ǫmax = min
ω>0

ξi<ǫmax

�

|F (jω, α)|
�n

i=1 |ai(jω)
αi+ξi Ln(jω)|

�

Remark 2. By choosing alternative values of p and q,
other robustness measure can be obtained as well. Taking
symmetric values p = q = 2, the condition (18) transforms
to

rmax = min
ω>0

�

�

ξ2
i
<rmax





|F (jω, α)|
�

�n
i=1 (ai(jω)

αi+ξi Ln(jω))
2





where rmax is the radius of the “circle” (hyper-sphere, to
be more precise) centered at the origin of the perturbation
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A common assumption is that the transfer function is
strictly proper, i.e. that high-frequency gain is zero, which
implies βm < αn.

If the transfer function (1) is commensurate of order ν,
then it can be rewritten as a ratio of two polynomials in
sν :

T ′(sν)

F ′(sν)
=

m
∑

j=0

bjs
j′ν

1 +
n
∑

i=1

aisi
′ν

, (3)

where j′ =
βj

ν
and i′ = αi

ν
are integers.

The stability addressed in this paper is the Bounded Input
Bounded Output (BIBO) stability. The system described
by T

F
in (1) is Lp-stable, 1 ≤ p ≤ ∞, if and only if

sup
u∈Lp,u�=0

�g ⋆ u�p
�u�p

< ∞, (4)

where ⋆ stands for the convolution product, g the inverse
Laplace transform (impulse response, or kernel) of T

F
(or

T ′

F ′ ) and u(t) is the system input. The Bounded-Input-
Bounded-Output (BIBO) stability is defined as the
L∞-stability.

In the case of fractional systems Bonnet and Partington
[2000] extended the well-known result regarding stability
of rational systems.

Theorem 1. (Bonnet and Partington [2000]). Let T
F

be

defined as in (1) with αn ≥ βm. Then T
F

is BIBO stable

if and only if T
F

has no pole in the closed right-half plane
{s : Re(s) ≥ 0} (in particular no poles of fractional order
as s = 0).

This theorem, conjectured in Skaar et al. [1988], Oustaloup
[1995], Matignon [1998], will be used later in this paper.
Further, Matignon [1998] established a very useful result
regarding stability of commensurate fractional systems.

Theorem 2. (Matignon [1998] extended). A commensu-

rate transfer function T ′

F ′ with a commensurate order ν, as
in (3), with T ′ and F ′ two coprime polynomials, is stable
if and only if

0 < ν < 2 (5)

and

∀s ∈ C such that F ′(s) = 0, | arg(s)| > ν
π

2
. (6)

Matignon initially proved this theorem for 0 < ν < 1. The
proof was extended in multiple references to the interval
(1, 2), see e.g. Malti et al. [2011].

2. MAIN RESULTS

Section 2.1 recalls the results established in Rapaić and
Malti [2016] when the highest differentiation order is not
increased. Then, the extension proposed in this paper,
allowing to handle variations in the highest differentiation
order, is presented in Subsection 2.2 as Theorems 6 and 7.

2.1 Perturbations not increasing αn

According to Theorem 1, if numerator and denominator of
T
F

defined in (1) contain no common factor, the stability is

determined only by poles position. It is therefore natural to
formulate the results in terms of the characteristic function
F .

Theorem 3. Let α = (α1, . . . , αn) ∈ R
n, and let

F (s, α) = 1 +
n
∑

i=1

ais
αi , (7)

where 0 < α1 < . . . < αn. Let further ǫ = (ǫ1, . . . , ǫn) ∈
Rn be such that

0 < α1 + ǫ1 < . . . < αn + ǫn ≤ αn . (8)

If

|F (jω, α)| >

∣

∣

∣

∣

∣

n
∑

i=1

aiǫi Ln(jω)

∫ 1

0

(jω)αi+tǫidt

∣

∣

∣

∣

∣

(9)

for all ω ∈ (0,∞), then F (s, α) and F (s, α + ǫ) have
the same number of zeros in the closed complex right
half plane. Ln(s) is the principal value of the complex
logarithm.

Proof: The real and the imaginary parts of F (s, α)
independently satisfy conditions of Theorem A, where one
needs to formally substitute x = 0 and h = ǫ. By adding
the two expressions together (and multiplying the one
regarding the imaginary part with j first) one obtains

F (s, α+ ǫ) = F (s, α) +

n
∑

i=1

∫ 1

0

∂F (s, α+ ǫ)

∂ǫi

∣

∣

∣

∣

ǫ←tǫ

ǫi

= F (s, α) +

n
∑

i=1

ai Ln(s)ǫi

∫ 1

0

sαi+tǫidt .

Now, by applying Rouché Theorem one sees that if

|F (s, α)| >

∣

∣

∣

∣

∣

n
∑

i=1

aiǫi Ln(s)

∫ 1

0

sαi+tǫidt

∣

∣

∣

∣

∣

(10)

on the contour C depicted in Fig. 1 with ε → 0 and
R → ∞, then F (s, α + ǫ) and F (s, α) have the same
number of zeros within the closed right-half plane. By
symmetry of the contour and of the Laplace transform,
only the upper half of the contour should be checked.

i) On the imaginary axis, (10) reduces to the condition (9)
stated in the formulation of the Theorem.

ii) On the quarter-circle with radius tending to zero, the
Laplace variable can be substituted by s = εejϕ, with
ϕ ∈ [0, π/2] and ε → 0.

1 > lim
ε→0

∣

∣

∣

∣

∣

n
∑

i=1

aiǫi Ln(εe
jϕ)

∫ 1

0

(εejϕ)αi+tǫidt

∣

∣

∣

∣

∣

(11)

Since the right-hand side vanishes with ε, the condition is
satisfied.

iii) On the quarter-circle with infinitely enlarging radius,
the Laplace variable can be substituted by s = Rejϕ, with
ϕ ∈ [0, π/2] and R → ∞. The upper bound on the right
hand side of (10) is obtained in a straightforward manner,
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