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Abstract: In engineering practice, delay-difference is often used to approximate the derivatives of output
signals for feedback control, leading to a closed-loop system with delay both in the states and in the
system’s coefficients. In this context, our objective is to find all the delay values contained in some
interval that guarantee the exponential stability of the closed-loop system subject to the delay-difference
approximation. A method for stability analysis of systems with delay-dependent coefficients developed
in our previous work is further extended and applied to tackle the particular form of systems considered
in this paper. The proposed stability analysis procedure is illustrated through the design of a mobile-robot

path-following controller.
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1. INTRODUCTION

Feedback control design using only the output is very common
in engineering practice due to the difficulty in measuring all
the state variables. Quite common in practice, a static feedback
of the output is not sufficient for stabilizing the system or to
ensure satisfactory performance. Several strategies are available
to deal with this problem. For instance, one may design an
observer to reconstruct the entire state "x(¢)” based on the output
’y(t)’. Another strategy commonly taken in practice is to use the
time derivative of the output, which leads to simpler controllers
in comparison with observer-based control design. Since the
derivative of the output usually can not be measured directly,
it is often approximated by the following finite difference:
sy~ 2T M
T
where T represents some positive delay value assumed suf-
ficiently small. As a consequence of using delay-difference
approximation (1) in the feedback, the closed-loop system be-
comes a delay system with delay-dependent parameters. We
will not restrict our analysis to small delay values correspond-
ing to the degrading effect specific to PD control schemes.

The idea of using delay for stabilization is not new. For in-
stance, a multiple delay framework is developed in Niculescu
& Michiels (2004) for stabilizing a chain of integrators, while
in Yamanaka & Shimemura (1993) multiple delays are used for
analysing some internal model control scheme. Bounded con-
trol for global stabilization has also been addressed in Mazenc,
Mondie & Niculescu (2003), where a single delay is used. Our
research differs from the previous ones in that we fix the other
parameter of the controller while looking for the range of the

delay parameter which guarantees that the closed-loop system
is exponentially stable with some pre-specified decay rate «.

Systems with delay-dependent coefficients can be found in vari-
ous scientific disciplines such as biological systems, e.g. Fabien
(2005) and physical systems, see, for instance, Wilmot-Smith
et al. (2006)). A large amount of research effort has been dedi-
cated to stability analysis of delay systems. Readers may refer
to Gu, Kharitonov & Chen (2003); Niculescu (2001); Michiels
& Niculescu (2014) for comprehensive discussion of the related
results. However, research on systems with delay-dependent
coefficients is not common in the literature. In Beretta & Kuang
(2002) an effective method is proposed for analysing stability
of such systems with a single delay. Gu et al. (2016) relaxed
some of their restrictive conditions and extended their approach
for more general delay systems. Given a delay interval of in-
terest denoted as .#, the method presented in Gu et al. (2016)
can be used to find all the sub-intervals in .# that guarantees
asymptotic stability of the system. It can be considered as a
generalization of the classical T-decomposition approach, see,
for instance, Michiels & Niculescu (2014); Lee & Hsu (1969).

The remaining part of this paper is organized as follows. We
first specify the form of control law considered in this paper and
the characteristic equation of the linearized closed-loop system
resulting from the control design. Then it is shown that by
shifting the variable in the characteristic equation, the condition
for exponential stability with decay rate « is equivalent to a
condition for just asymptotic stability. Next, we will make some
further extension of the method developed in Gu et al. (2016)
so that it can be used for the stability analysis of the control
system considered in this paper. Finally the proposed design
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and analysis procedure is applied to a path-following control
problem for illustration. The notations are standard.

2. MOTIVATING EXAMPLE

Consider a standard robot path following problem discussed in
Lapierre & Jouvencel (2008) with some simplification. As illus-
trated in Fig.1, a unicycle travelling at a constant speed V fol-
lows a straight path. The robot is assumed to be non-holonomic,
so the direction of its translational velocity is always along its
heading direction. The control input u is the derivative of its
yaw rate, which reflects the yaw moment applied to the robot. It
is easy to see the linearized dynamics of the system is described
by

e=V0o

=0

b=u @)
y=(o e,

where e stands for the lateral tracking error, 8 is the heading
angle of the robot and  is the yaw rate. The signal y is the
output vector measured by the on-board sensors.
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e

Fig. 1. Illustration of the robot path-following problem

There exist real numbers kg, k1, k> such that by choosing
u=—kow—kie—kVo,

the system can be stabilized. In practice, 6 is not convenient to

measure, therefore we do not include it in the output y. Noticing

0=V léand e ~ w, we choose instead the following

control law that uses delayed signal:

u= (ko k)y—(0 k)2 3)

with some appropriate values of the coefficients. By using some
continuity type arguments, it can be shown that if system (2)
can be stabilized by the following control law for some fixed
real gains ko, k1, kp:

u=—(ko ki1)y—(0 k2)y, “)
then it can also be stabilized by (3) for sufficiently small delay.
However, if the delay value is too small, the noise contained
in the measurement of y will be greatly amplified and injected
into the closed-loop system and thus severely deteriorates the
performance. On the other hand, a too large value of T may
cause slow convergence, strong oscillation, or even instability.
Therefore for practical consideration it is useful to find a set
of delay value for (3) such that the closed-loop system is
exponentially stable with some guaranteed decay rate and then
one can choose an appropriate delay value in this set.

—y(t—1)
T

3. PROBLEM STATEMENT
3.1 The PD Control Scheme

Consider a linear system of the form

13331

X =Ax+ Bu, (@)
where x € R” is the system state and u € R is the control

input. Let y = Cx be the measured output vector. We assume
the followings:

Assumption 1. There exist gain matrices K;, K, such that the
feedback law

u(t) = Koy(t) + Kiy(t) (6)
stabilizes the origin of (5)-(6). Furthermore, the matrix K sat-
isfies K{CB = 0.

The condition Ki{CB = 0 is imposed to avoid control signal
u(t) appearing also on the right-hand side of (6), causing an
algebraic loop. Consequently, the system (5)-(6) is guaranteed
to be well-posed.

The signal y usually can not be obtained directly from sensor
measurement. In this case, delay-difference of y(z) can be used
to approximate y() and (6) thus becomes

u(r) =Koy(f)+K1M, (N
where 7 > 0 is a constant number. For the closed-loop system
consisting of (5) and (7), if the system trajectory x, converges
to zero exponentially fast with decay rate o, then we say the
system is o-stable. Otherwise the system is o-unstable. For
some fixed Ko, K; and a given delay interval (0,7") as well as
some non-negative decay rate o, we are interested in finding all
the subintervals contained in (0,7") such that the closed-loop
system is ¢t-stable for all 7 in these subintervals.

3.2 Discussion

Although the feedback in (6) only involves the term y(¢) and
¥(t), however in practice a variety of stabilization problems
can be converted into this form by first introducing a set of
auxiliary state variables, which is then incorporated into the
feedback. One thus constructs a control law based on dynamic
output feedback. For instance, the classical PID controller can
be constructed by first introducing an extra state variable &
satisfying:
6=y

Now, we can define u = K;0 + v and choose a PD control law
for the new control input v as v = Kpy 4+ Kpy to construct the
PID control.

As noted in Niculescu & Michiels (2004), when the open-loop
system possesses more than a pair of imaginary roots, then it is
necessary to introduce multiple delays in order to stabilize. We
will leave this issue to our future work and restrict ourselves to
control system with a single delay in this paper.

4. STABILITY ANALYSIS
4.1 Characteristic Equation and Stability

Let G(A) = 0 be the characteristic equation of the open-loop
system (5) with u =0, then G(A) is a polynomial in A of degree
n. There exist polynomials G, G, such that the characteristic
equation of the control system consisting of (5)-(6) takes the
form

where G,1 (A1) and G,2(A)A are generated by the terms Kyy and
K1y in the control feedback (6), respectively. Due to Condition
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