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a b s t r a c t

This paper is concerned with the stability and stabilization issues for a family of discrete-time stochastic
switching systems with bounded sojourn time. The stochastic switching systems are modeled by semi-
Markov jump linear systems and the semi-Markov kernel approach is employed to handle the stability
and stabilization problems. The sojourn time of each system mode is considered to have both upper and
lower bounds, which is more general than the scenarios in previous literature that only consider the
upper bound of sojourn time. The concept of σ -error mean square stability is put forward in a new form
by taking into account the lower bounds of sojourn time for all system modes. By virtue of a Lyapunov
function that not only depends on the current system mode but also on the elapsed time the system has
been in the current mode, together with certain techniques eliminating powers of matrices, numerically
testable stability and stabilization criteria in the sense of the proposed σ -error mean square stability are
obtained for the closed-loop stochastic switching system. Finally, a numerical example and a practical
example of a DC motor are utilized to demonstrate the effectiveness of the proposed control strategy and
the superiority of allowing for the lower bound of sojourn time.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic switchings are unavoidable in various practical sys-
tems, such as power electronics systems (Oliveira, Vargas, do Val,
& Peres, 2014; Vargas, Costa, & do Val, 2013; Vargas, Sampaio,
Acho, Zhang, & do Val, 2016), mechanical systems (Anulova, 2015;
Iwankiewicz, Nielsen, & Larsen, 2005), and communication net-
works (Hespanha, 2004; Liu, Fridman, & Johansson, 2015; Zhao,
Guo, & Ding, 2015), thus researches on stochastic switching sys-
tems are of great practical significance. The advances on stochastic
switching systems can be seen in the literature (Basin & Calderon-
Alvarez, 2009; Basin & Maldonado, 2014; Basin & Rodkina, 2008;
Boukas, 2007; Liu, Zhao, Niu, Wang, & Xie, 2015; Luan, Liu, & Shi,
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2011; Xiong, Lam, Shu, & Mao, 2014) and references therein. As an
important class of stochastic switching systems, Markov jump sys-
tems (MJSs) have been widely utilized to model systems that have
different systemmodes andmay switch among themstochastically
(Li, Lam, Gao, & Xiong, 2016). During the past decades, numerous
studies on the issues of stability analysis and controller synthesis
for MJSs have been launched, see, e.g., Aberkane (2011), Li, Chen,
Lam, and Mao (2012), Niu, Ho, and Wang (2007), Shu, Lam, and
Xiong (2010), Wu, Park, Su, and Chu (2012), Wu, Shi, Su, and Chu
(2012) and Wu, Xie, Shi, and Xia (2009). It is worth emphasizing
that these developed theories can be effectively applied only if
the sojourn time between consecutive jumps should be subject
to exponential distribution in the continuous-time domain (or
geometric distribution in the discrete-time domain), which cannot
cover all scenarios.

Another important class of stochastic switching systems, semi-
Markov jump systems (S-MJSs) has been an important research
area since it was first studied in Howard (1964), and recent years
have witnessed a growing interest in the stability and control
problems of this class of systems, see, e.g., Jiang, Xi, and Yin (2012),
Li, Wu, Shi, and Lim (2015), Schioler, Simonsen, and Leth (2014),
Wei, Qiu, and Fu (2015) and Yang, Zhang, and Yin (2016). In con-
trast with MJSs, the sojourn time in S-MJSs is not necessarily sub-
ject to either exponential distribution or geometric distribution,
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which indicates that the transition probabilities in S-MJSs are time-
varying and have the so-called ‘‘memory’’ property. Therefore,
S-MJSs are capable of describing much broader scope of stochastic
switching systems, and MJSs can be regarded as a special class
of S-MJSs. However, due to the generality of semi-Markov chain
in the capability of modeling stochastic switchings, investigations
on S-MJSs are more challenging than MJSs. Up to date, developed
theories on S-MJSs are still far away from maturity, even for the
basic semi-Markov jump linear systems (S-MJLSs).

In some earlier works on S-MJLSs, several special types of prob-
ability distributions of sojourn time are utilized to address the
stability problem, see, e.g., Hou, Luo, and Shi (2005), Hou, Luo, Shi,
and Nguang (2006), Huang and Shi (2013), Huang, Shi, and Zhang
(2014) and Schwartz andHaddad (2003), inwhich the sojourn time
of each system mode possesses a single distribution with certain
parameters. In order to overcome such a limitation, very recently,
the so-called semi-Markov kernel (SMK) approach is exploited in
Zhang, Leng, and Colaneri (2016). With the introduction of SMK,
the statistic characteristics of sojourn time in S-MJLSs can be de-
pendent on both the current and the next system modes, which
is more general than those in the previous studies. In addition,
as the transition probabilities rely on all the history information
of past switching sequences in a semi-Markov chain, it is rather
difficult to obtain numerically testable stability or stabilization
condition if to completely utilize the probability density function
(PDF) information of sojourn time (Zhang, Yang, & Colaneri, 2017).
To tackle this problem, as well as considering the fact that the
practical sojourn time is generally finite, a recent attempt in Zhang
et al. (2016) is to make a truncation on the sojourn time of each
system mode to be upper-bounded, such that a finite number of
stability conditions can be obtained, which can be numerically
tested.

Note that in reality, theremay be a nonzero possibility for some
stochastic switching systems that mode switchings cannot occur
immediately after the previous switching, and consequently the
existence of lower bound of sojourn time is highly possible. One
typical example can be found in a machine with three modes,
i.e., ‘‘good’’, ‘‘fair’’ and ‘‘broken’’ (Ross, 2009), as it usually takes
time to recover to ‘‘good’’ or ‘‘fair’’ mode from ‘‘broken’’ mode.
Another typical example is an ecological system that can be mod-
eled as an S-MJLS (Zhang et al., 2017), in which evident char-
acteristics are often displayed by different seasons that cannot
change rapidly. Recent studies on sojourn time with lower bound
can be found in stochastic timed automata (Bertrand, 2015) and
quantum resonances (Asch, Bourget, Cortés, & Fernandeza, 2016).
However, in the control community, no insightful investigations
have been reported on the issue of S-MJLSs with the consideration
of lower bounds of sojourn time so far, and the derived stability
or stabilization condition may be quite conservative if ignoring
the existence of such lower bounds. Whereas the concept of mean
square stability (MSS) considers the random sojourn time to be
any length (even infinity) and there exists an error to approx-
imate MSS by allowing for finite sojourn time, the concept of
σ -error mean square stability (σ -EMSS) is introduced in Zhang
et al. (2016) where σ characterizes the degree of approximation
error of σ -EMSS toMSS. Unfortunately, such defined σ -EMSS is not
applicable if there exist lower bounds of sojourn time in any system
modes. Another drawback of the σ -EMSS lies in that σ becomes
larger if more system modes are considered, which leads to an
incomparability of the degrees of approximation errors among
systems with different numbers of modes.

Based on the aforementioned discussions, this paper investi-
gates the stability and stabilization problems for a class of discrete-
time S-MJLSs with finite sojourn time that has both upper and
lower bounds for each system mode. The main contributions are
summarized as follows: (i) the lower bound of sojourn time for

each system mode is taken into account as a first attempt, which
generalizes the previous results only considering the upper bound;
(ii) a novel framework of σ -EMSS is proposed by allowing for both
upper and lower bounds of sojourn time for each system mode,
which describes a broader scope of stability and is better scaled
than the traditional σ -EMSS; (iii) the approximation error σ of
σ -EMSS to MSS is defined in the form of average value of com-
ponents of all the system modes, such that the σ among different
S-MJLSs with different system modes can be comparable. The re-
mainder of the paper is organized as follows. Section 2 formulates
the problem and gives two examples to show the reasonability
of considering lower bound of sojourn time. Section 3 is devoted
to the development of stability and stabilization criteria which
can be tested numerically. To evaluate the theoretical results, two
illustrative examples are provided in Section 4. Finally, Section 5
draws the conclusion and proposes the perspectives for future
works.
Notations: The notation used throughout this note is standard
except where otherwise stated. The superscripts ‘‘T’’ and ‘‘−1’’ in-
dicate vector or matrix transposition and inverse, respectively.
Rm denotes the m-dimensional Euclidean space, and ∥·∥ is the
Euclidean vector norm in Rm. R≥0, R>0 and N represent the sets
of non-negative real numbers, positive real numbers and non-
negative integers, respectively;R[s1,s2],N≥s1 andN[s1,s2] denote the
sets

{
i ∈ R≥0|s1 ≤ i ≤ s2

}
, {i ∈ N|i ≥ s1} and {i ∈ N|s1 ≤ i ≤ s2},

respectively. E {x} and E{x}|y denote, respectively, the mathemat-
ical expectation of x and the mathematical expectation of x condi-
tional on y. The notation P ≻ 0 (P ≺ 0) means that P is positive
(negative) definite. In addition,

[
ωij

]
i,j∈{1,2,...,N}

refers to an N × N
matrix with ωij representing the ith row, jth column element. ⊗
refers to the Kronecker product of matrices, and diag{· · · } means
a block-diagonal matrix. In symmetric block matrices, the symbol
‘‘∗’’ is used as an ellipsis for the terms that are introduced by sym-
metry. Im and 0 are identitymatrix of orderm and zeromatrix with
appropriate dimensions, respectively.Matrices, if their dimensions
are not explicitly mentioned, are assumed to be compatible for
algebraic operations.

2. Preliminaries and problem formulation

Let us consider the following discrete-time stochastic switching
system on the complete probability space (Ψ ,F, Pr):

x (k + 1) = Ar(k)x (k) + Br(k)u (k) (1)

where Ψ is the sample space, F the σ -algebra of subsets of the
sample space, and Pr the probabilitymeasure onF; x (k) ∈ Rnx and
u (k) ∈ Rnu denote the system state and control input, respectively.
The jump process {r(k)}k∈N is considered to be a semi-Markov
chain, which takes values in the finite set M ≜ {1, 2, . . . ,M}, and
governs the switchings among theM systemmodes. Then, system
(1) is regarded as a semi-Markov jump linear system (S-MJLS).

To recall the formal definition of semi-Markov chain, we first
present the concept of Markov renewal chain.

Definition 1 (Barbu & Limnios, 2006). Let us consider a stochastic
process {Rn, kn}n∈N, where Rn is the index of system mode at the
nth jump and takes values in M; kn denotes the time instant at
the nth jump with k0 = 0. The stochastic process {(Rn, kn)}n∈N
is a discrete-time homogeneous Markov renewal chain (MRC) if
∀a ̸= b ∈ M, ∀τ ∈ N≥1 and ∀n ∈ N, Pr(Rn+1 = b, Sn =

τ |R0, k0; R1, k1; . . .; Rn = a, kn) = Pr(Rn+1 = b, Sn = τ |Rn = a) =

Pr(R1 = b, S0 = τ |R0 = a), where Sn ≜ kn+1 − kn ∈ N≥1, ∀n ∈ N
denotes the sojourn time of the system mode between the nth
jump and (n + 1)th jump.
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