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A B S T R A C T

Transient stability assessment needs to be further studied when confronted with uncertainties brought in by the
integration of renewable energy and measurement errors. This paper outlines a novel method based on interval
Taylor expansion incorporated optimal solution technique to solve the uncertainty model for transient stability
assessment. Uncertainty assessment framework for power systems transient stability is described as ordinary
differential equations with interval variables, which can be equivalently transformed into three sets of ordinary
differential equations with only deterministic parameters using the interval Taylor method with second-order
expansion. In order to further reduce the overestimation, a quadratic programming model is constructed to
estimate upper and lower boundaries of state variables. Application of the proposed method is implemented in
SIMB system and IEEE-30 system and the results are demonstrated in details. Comparisons with affine arithmetic
(AA)-based method and Monte Carlo method verify the effectiveness and better performance of the proposed
method.

1. Introduction

With the integration of large-scale renewable energy (e.g., photo-
voltaic and wind energy), these introduce inherent uncertainties into
power systems on the generation side due to the variable nature of solar
insolation and wind speed [1,2], and flexible loads (e.g., plug-in hybrid
electric vehicles) are randomly distributed into power systems, which
introduce driven uncertainties on the load side [3]. Ref. [4] reviewed
wind power variability and its different impacts on power systems, and
the issue of quantifying effects of model uncertainty on transmission
security was addressed in Ref. [5]. Therefore, all these uncertainties
bring new problems arising from power systems security and stability
[6], which require some methods to assess transient stability under
uncertainties [7].

Transient stability analysis is required for planning, operation and
control, which are used to assess the capability of power systems to
remain in synchronism when subjected to large and sudden system
disturbances [8]. To take consideration of the uncertainties of the fac-
tors associated with the practical operation of power systems [9], such
as fault type, fault location, fault clearing process, system parameters
and reclosing process, some probabilistic methods, for example, Monte
Carlo method [10,11], probabilistic collocation method [12] and

probabilistic weighting method [13], were proposed to assess transient
stability. Among the three probabilistic assessment methods, Monte
Carlo method was widely used to address the transient stability pro-
blem under uncertainties. Although Monte Carlo method is straight-
forward, accurate and easy to implement, it is very time consuming as a
large number of random time domain simulations are needed to de-
termine the probabilistic transient stability index [14]. Apart from
Monte Carlo method, the analytical method handles uncertainties based
on linearization and obtains the probability of random output variables,
can be more computationally efficient [15]. Most of these probability-
based approaches require enough historical data to achieve the prob-
ability density function of the uncertain variables, or assume that it
obeys a certain probability distribution.

Special attention has also been paid in the literature to the sto-
chastic calculus-based methods [16]. In Ref. [17], the stochastic Lya-
punov stability method and the numerical solution of stochastic dif-
ferential equations were combined to present a new approach that
develops a quantitative assessment of probabilistic stability. In Ref.
[18], a stochastic power system model based on stochastic differential
equations (SDEs) was proposed to consider the uncertain factors such as
load levels and system faults, and two numerical methods, namely the
stochastic Euler and Milstein schemes, were employed to solve SDEs
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numerically. The singular perturbation method for SDEs was the first
attempt to conduct stability analysis for power systems with un-
certainties arising from load variations and other renewable energy in
Ref. [19]. All these assessment methods adopted the stochastic differ-
ential equations to model power systems under uncertainties, and some
new stochastic numerical solution techniques were developed to solve
them. However, the stochastic calculus-based approaches exhibit some
assumptions in properly modeling the uncertainties, and suffer low
computational efficiency and unclear impact mechanism, because of
their complexity.

As an alternative to probability-and stochastic calculus-based
methods, non-probabilistic interval analysis method was applied in Ref.
[20] for transient stability simulation under system parameters un-
certainty which were modeled as intervals numbers. While the resultant
interval differential equations were solved by means of the method that
combines interval arithmetic and Taylor series expansion, leading to
overestimation with the simulation time progressing. Therefore, affine
arithmetic (AA) [21–23], which was introduced in Ref. [24] as an im-
provement of interval arithmetic, has been proposed to take into ac-
count the correlation between uncertain operands and sub-formulas
involved in the interval calculation. One of the advantages of AA-based
method is transforming the interval variable to affine form, overcoming
the drawback of conservatism. However, the affine form formulation
only used first-order Taylor expansion, may also causing the interval
solution enlarged, which may be an issue in some applications. Besides
the affine arithmetic, there also exist some other efficient methods, such
as interval vertex method [25], parameter perturbation method [26],
and collocation method [27,28] and so on. Although these interval
methods were used in mechanical systems, these methods can also be
applied to the power system stability assessment with necessary ex-
tensions.

To overcome the deficiency of using AA-based method, a novel
method for uncertain transient stability assessment is proposed in this
paper, which applies interval Taylor method [29,30] with second-order
expansion for establishing the nonlinear optimization model instead of
linear optimization model. First of all, the paper utilizes the multi-
machine classical model [31] to formulate transient stability assess-
ment framework with interval variables, then by means of the interval
Taylor method with second-order expansion, the original ordinary
differential equations with interval variables for transient stability as-
sessment are equivalently transformed into three sets of ordinary dif-
ferential equations with only deterministic parameters. In the end, a
quadratic programming model [32] to estimate upper and lower
boundaries of state variables are constructed to further reduce the
overestimation.

In the following context, transient stability assessment framework
under interval uncertainty is presented in Section 2, and then the
complete formula for solving interval boundaries is derived through
interval Taylor method and the detail calculation procedure is given in
Section 3. It is followed by case studies presented in Section 4 in which
two cases, a single-machine infinite-bus (SMIB) system and IEEE-30
system for demonstrating the effectiveness of the proposed method.
Finally, Section 5 summarizes the main conclusions and contributions
of the paper.

2. Transient stability assessment formulation under interval
uncertainty

2.1. Classical model for transient stability assessment

To assess power systems transient stability, dynamic simulations
based on numerical integration methods are performed to obtain time-
domain trajectories following a large and sudden disturbance, and then
such time-domain trajectories are analyzed with different security cri-
teria, such as rotor angle [33] and post-transient voltage recovery [31].
Mathematical models are developed to describe the dynamic behaviors

of various system components, which consist of first-order ordinary
differential equations representing dynamics of generators and their
controllers; and algebraic equations representing the network coupling
between generators, loads, and transmission system.

In this study, the multi-machine classical model [31] for transient
stability analysis is used, which is shown in Fig. 1. In Fig. 1 I denotes
the current injected into the network, Y N is the system admittance
matrix, and V denotes the bus voltage. In this model, all the loads are
assumed to be constant impedances and network nodes are eliminated
by network simplification. Node 1, 2, …, m are internal generator
nodes. The initial values ∠ ∈E δ i m, (1, )i i are determined by the steady-
state power flow, and remain constant in the transient period.

As seen in the portion of the network shown in Fig. 1, the network
equation can be defined as
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T ∈i m(1, ). ′Y N is the augmented nodal
admittance matrix, which includes the constant impedances of the r
loads. Y G is the self-admittance matrix of the generator nodes. Both
Y GN and Y NG are the mutual admittance matrix between the generator
nodes and the network nodes.

Eliminating all nodes of the network, thus (1) can be simplified to
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And real electrical out power of the internal node i is given by
= ∗P E IRe( )ei i i , i.e.,
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where =C E E Bij i j ij, =D E E Gij i j ij. Therefore, the multi-machine classical
model becomes
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Fig. 1. Description of multi-machine classical model.
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