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a b s t r a c t

We propose a novel frequency control approach in between centralized and distributed architectures,
that is a continuous-time feedback control version of the dual decomposition optimization method.
Specifically, a convex combination of the frequency measurements is centrally aggregated, followed by
an integral control and a broadcast signal, which is then optimally allocated at local generation units. We
show that our gather-and-broadcast control architecture comprises many previously proposed strategies
as special cases. We prove local asymptotic stability of the closed-loop equilibria of the considered power
system model, which is a nonlinear differential–algebraic system that includes traditional generators,
frequency-responsive devices, as well as passive loads, where the sources are already equipped with
primary droop control. Our feedback control is designed such that the closed-loop equilibria of the power
system solve the optimal economic dispatch problem.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The quintessential task of power system operation is to match
electrical load and generation. The power balance in an AC power
network can be directly accessed via the system frequency, mak-
ing frequency regulation the fundamental mechanism to ensure
the load-generation balance. This task is subject to operational
constraints, system stability, and economic interests, and it is tra-
ditionally accomplished by adjusting generation in a hierarchi-
cal structure consisting of three layers: primary droop control,
secondary automatic generation control (AGC), and tertiary con-
trol (economic dispatch). These layers range from fast to slow
timescales, and from decentralized to centralized control architec-
tures (Machowski, Bialek, & Bumby, 2008; Wood & Wollenberg,
1996).

With the increasing integration of variable renewable sources,
such as wind and solar power, low-inertia power electronic gener-
ation, larger peak loads, such as electric vehicles, and liberalized
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reserve markets on increasingly slower times (and their accom-
panying deterministic frequency errors), power grids are subject
to larger and faster fluctuations (Milligan et al., 2015). In such
a distributed generation environment, frequency control requires
more fast-ramping generators to act as spinning reserves nowa-
days mostly provided by gas-driven generation, which is expen-
sive, inefficient, and the resulting emissions defeat the purpose
of renewables (Leonhard & Muller, 2002). As a partial remedy,
distributed frequency control through inverter-interfaced sources
(Carrasco et al., 2006) or loads (Short, Infield, & Freris, 2007) has
a high potential due to the fast ramping capabilities of these de-
vices. In any case, the task of frequency regulation will have to be
shouldered bymore andmore small-scale and distributed devices.

From a control perspective, the main objective of frequency
control is to regulate the system frequency subject to operational
constraints and economic interests such as load sharing, optimal
generation dispatch, or according to the outcome of reserve mar-
kets. Further constraints include a partial information structure
accounting for distributed generation, liberalized markets, and
limited system knowledge. A plethora of strategies has been de-
veloped to address these tasks ranging from fully decentralized
to centralized architectures, partially relying on time-scale sep-
aration and hierarchical control, and being dependent on the
detailed system model, load and generation forecasts. While cen-
tralized strategies such as AGC often suffer from a single point
of failure, distributed or fully decentralized approaches often
fall short in practical implementations and typically require a
retrofitting of a costly peer-to-peer communication architecture.
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We postpone a detailed literature review to Section 2.4, where we
also present somenovel results of independent interest concerning
robustness and fairness issues.

In this paper, we consider a nonlinear, differential–algebraic
equation (DAE), and heterogeneous power systemmodel including
traditional generation, power electronic sources, and frequency-
responsive as well as passive loads. We assume that the sources
are already equipped with primary droop control, and we focus
on designing the secondary control strategy while simultaneously
solving a tertiary economic dispatch problem. Our control ap-
proach falls square in between centralized and distributed archi-
tectures, and it is motivated and developed by exploiting paral-
lels in dual decomposition methods in optimization (Boyd, Parikh,
Chu, Peleato, & Eckstein, 2010), auctions in markets (Varian &
Repcheck, 2010), mean field control (Grammatico, Parise, Colom-
bino, & Lygeros, 2016), as well as classic AGC (Machowski et al.,
2008). Interestingly, our control architecture includes many previ-
ous frequency control strategies for specific parameter sets.

Specifically, we start with an online optimization routine
for the steady-state dynamics based on the dual decomposition
method that evaluates the price of frequency violation in feedback
with the optimal generation response of each generator. Our
iterative algorithm resembles a decentralized auction mechanism
for a spot market. Next, we propose a continuous-time feedback
control version of this optimization scheme as an aggregation
of a convex combination of frequency measurements, followed
by integral control and optimal local allocations of a broadcast
control signal. Our gather-and-broadcast controller is such that
the closed-loop equilibria of the power system are optimizers
of the economic dispatch. We believe that our gather-and-
broadcast control strategy combines appealing features from both
centralized and distributed strategies. It robustifies the frequency
control by drawing upon the information of multiple sensors and
distributing the control actions to multiple generators, it does not
require anymodel knowledge, it relies on unidirectional broadcast
communication, and it is privacy preserving: no participant needs
to communicate its internal model or cost function. We prove
local asymptotic stability of the nonlinear closed-loop DAE system
for a specific class of strictly convex cost functions that give
rise to typical secondary control curves encountered in practice,
including dead-bands, linear response regions, and saturation
effects. The main technical results in this paper generalize those
in our preliminary work (Dörfler & Grammatico, 2016), which
are based on quadratic cost functions and more restrictive
assumptions on the system parameters. Our analysis relies on a
dissipative Hamiltonian formulation of the closed-loop system, an
incremental Bregman-type Lyapunov function as in Trip, Bürger,
and De Persis (2016), convex analysis (Rockafellar & Wets, 1998),
and a LaSalle invariance principle for DAE systems (Dörfler &
Schiffer, 2016; Hill & Mareels, 1990).

The paper is organized as follows. In Section 2, we introduce the
frequency control problem that includes both frequency regulation
and optimal economic dispatch, and we provide a comprehensive
literature review. In Section 3, we propose our novel frequency
control strategy, and in Section 4 we show local asymptotic
stability of a desirable subset of the closed-loop equilibria. In
Section 5, we illustrate the performance of our strategy with a
simulation case study on the IEEE39 New England grid and also
compare it to other controllers. Section 6 concludes the paper and
raises some open questions.

Notation

R, R>0, R≥0, R<0, R≤0 denote the set of real, positive real, non-
negative, negative and non-positive real numbers, respectively.
A⊤

∈ Rm×n denotes the transpose of A ∈ Rn×m. Given some

matrices A1, . . . , AN , diag (A1, . . . , AN) denotes the block-diagonal
matrix with A1, . . . , AM in block-diagonal positions. Given some
functions or scalars f1, . . . , fN , we use the vector notation f :=

[f1, . . . , fN ]
⊤ and matrix notation F := diag (f1, . . . , fN), unless

differently specified. 1N (0N ) denotes a vector in RN with elements
all equal to 1 (0). Given a function f : RN

→ R, the operator

∇f (·) : RN
→ RN denotes the gradient


∂ f
∂x1

(x), . . . , ∂ f
∂xN

(x)
⊤

.

The sum operator, i.e.,


i or


i,j, applies to all terms on its right
side as in Rockafellar and Wets (1998).

2. Frequency control in power systems

2.1. Power system model

Consider a power system modeled as a graph G = (V, E) with
nodes (or buses)V = {1, . . . ,N} and edges (or branches) E ⊆ V×

V .With each bus i ∈ V , we associate a harmonic voltagewaveform
Vi cos(ω∗t + θi), where ω∗

= 2π · f ∗ (and f ∗
= 50 Hz or f ∗

=

60 Hz is the nominal grid frequency). We consider a lossless high-
voltage transmission grid with topology induced by the sparse
susceptance matrix B̃ ∈ RN×N . We partition the buses as V =

G∪F ∪P corresponding to synchronous generators G, buses with
frequency-responsive devicesF (e.g., frequency-sensitive loads or
inverter sources performing droop control), and passive buses P
(e.g., static loads or inverters performing maximum power-point
tracking). The associatedDAEmodel reads as (Hill &Mareels, 1990;
Machowski et al., 2008)

∀i ∈ G : Miθ̈i + Diθ̇i = Pi + ui −

j∈V

Bi,j sin(θi − θj) (1a)

∀i ∈ F : Diθ̇i = Pi + ui −

j∈V

Bi,j sin(θi − θj) (1b)

∀i ∈ P : 0 = Pi + ui −

j∈V

Bi,j sin(θi − θj) (1c)

where, for all i ∈ V , Pi ∈ R is a constant power injection or
demand (positive for sources and negative for loads), ui ∈ Ui =

[ui, ui] ⊂ R is a controllable injection or demand, and Bi,j :=

B̃i,jViVj is the effective susceptance for all i, j ∈ V . A generator
i ∈ G is characterized by its rotational inertia Mi > 0 and
primary droop control coefficient Di > 0. A frequency-responsive
device i ∈ F is characterized by its frequency-sensitivity Di > 0
(e.g., the droop coefficient for inverters or actively controlled loads,
or the damping of a frequency-dependent load). Passive buses
(inverters performing power-point tracking and static loads) have
no dynamics. Finally, the absence of integral control at node i ∈ V
is modeled by Ui = {0}.

Remark 1 (Unmodeled Dynamics). We do not model reactive
power and voltage dynamics, as they do not affect the frequency
control problem on the considered time scales—though all of our
forthcoming analyses can be extended under a definiteness as-
sumption on the power flow Jacobian; see De Persis, Monshizadeh,
Schiffer, and Dörfler (2016) for a related analysis. �

Finally, we note that the vector field in (1) is invariant under
a rigid rotation of all angles. Accordingly, all equilibria of the
power system model (1) are sets that are invariant under rigid
rotations, and all properties such as uniqueness, optimality, and
asymptotic stability of equilibria are to be understood modulo
rotational symmetry.

2.2. Frequency regulation

Note that if there is a synchronized solution to (1) satisfying
θ̇i = ωsync ∈ R for all i ∈ V , then by summing up all steady-state
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