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a b s t r a c t

In this paper we study theoretical properties of the frequency control problem in inverter-based
microgrids with primary and decentralised/distributed secondary control loops. Stability of these
microgrids has been the subject of a number of recent studies. Conventional approaches based on standard
hierarchical control rely on time-scale separation between primary and secondary control loops to show
local stability of equilibria. In this paper we show that (i) frequency regulation can be ensured without
assuming time-scale separation and, (ii) ultimate boundedness of the trajectories starting inside a region
of attraction is guaranteed under a condition on the power mismatch between demand and generation at
each inverter bus. An estimate of the region of attraction is obtained from which an ultimate bound set
for the state trajectories can be determined by recursive iterations of a nonlinear mapping. The derived
results provide a certificate of the overall stability and performance of the controlled microgrid.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The last decade has witnessed a gradual transition from large
centralised energy grids towards small-scale distributed genera-
tion (DG) of power (Ustun, Ozansoy, & Zayegh, 2011), driven by the
need to reduce the environmental impacts of coal-fired generation.
DG sources are typically integrated inmicrogrids before being con-
nected to the main energy grid. A microgrid is a small-scale power
system consisting of DG units, loads and local storage, operating
together with energy management, control and protection devices
(Lasseter, 2001; Peng, Li, & Tolbert, 2009). Microgrids can operate
while being connected to themain grid or in an islandedmode. The
DG resources connected to themicrogridmay generate either vari-
able frequency AC power or DC power, and are interfaced with an
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AC grid via power electronic DC/AC inverters. In islandedmode, in-
verters act as ideal voltage sources through which control actions
to ensure various tasks such as synchronisation, power balance and
load sharing can be executed (Peças Lopes, Moreira, & Madureira,
2006).

Control strategies to provide stability in microgrids have been
the focus of recent study. In Bidram and Davoudi (2012) and
Guerrero, Vasquez, Matas, García de Vicuña, and Castilla (2011),
hierarchical control for microgrids has been proposed in order
to standardise their operation and functionalities following a
model traditionally applied in power grids. In this hierarchical
approach, three main control layers are defined to manage voltage
and frequency stability and regulation, power flow and economic
optimisation. This paper focuses on the primary and secondary
control layers, which are commonly used to implement the
automatic control mechanisms to achieve voltage and frequency
stability and regulation (Ainsworth & Grijalva, 2013; Andreasson,
Sandberg, Dimarogonas, & Johansson, 2012; Bidram & Davoudi,
2012; Bouattour, Simpson-Porco, Dörfler, & Bullo, 2013; Dörfler,
Simpson-Porco, & Bullo, 2016; Guerrero et al., 2011;Heidari, Seron,
& Braslavsky, 2014; Lu&Chu, 2014; Schiffer, Ortega, Astolfi, Raisch,
& Sezi, 2014; Shafiee, Vasquez, & Guerrero, 2012; Simpson-Porco,
Dörfler, & Bullo, 2013).

For systems with inductive lines, inverters are typically con-
trolled to emulate the droop characteristic of synchronous gen-
erators. Conventionally, the frequency/active-power (or ‘‘ω − P ’’)
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droop control (Chandorkar, Divan, & Adapa, 1993) is adopted as the
decentralised control strategy for the autonomous active power
sharing at primary layer. Since the standard droop control is a
purely proportional control strategy, the secondary control layer
has the task of compensating for frequency steady-state errors in-
duced by the primary control layer. The secondary control layer
can be implemented in a centralised, decentralised or distributed
fashion (Andreasson et al., 2012; Schiffer, Anta, Trung, Raisch, &
Sezi, 2012; Shafiee et al., 2012). In this paper we consider micro-
grids with decentralised and distributed secondary control loop
and study their impact on the stability of the system.

Stability and convergence properties of droop-controlled net-
works of inverters and loads have only very recently started to be
analysed in detail (Ainsworth & Grijalva, 2013; Andreasson et al.,
2012; Bouattour et al., 2013; Lu & Chu, 2014; Schiffer et al., 2014;
Simpson-Porco et al., 2013). For example, in Ainsworth and Gri-
jalva (2013), the authors proved that the frequency error in mi-
crogrids with decentralised secondary control loop can be made
arbitrarily small, although not zero. To prove this result, they
assumed time-scale separation between primary and secondary
loops, which is a conventional method to study properties of mi-
crogrids. In Shafiee, Guerrero, and Vasquez (2014), a distributed
secondary controller exploiting all-to-all communication between
inverters is proposed to regulate frequency. In Simpson-Porco et al.
(2013), the authors derive a necessary and sufficient condition for
the existence of a unique and locally exponentially stable equilib-
rium state for a droop-controlled network. Further, they propose
a distributed secondary-control scheme to dynamically regulate
the network frequency to a nominal value while maintaining pro-
portional power sharing among the inverters, and without assum-
ing time-scale separation between primary and secondary control
loops. This is in contrast with more conventional analyses which
often rely on the time-scale separation assumption (Ainsworth &
Grijalva, 2013; Bidram & Davoudi, 2012).

In this paperwe analyse stability of an inverter-basedmicrogrid
with purely inductive lines under frequency (primary) droop
control and with secondary control loops. It is well-known that
the frequency in networks with purely inductive lines is mainly
affected by the active-power balance (Kundur, 1994, Section 11.1).
Of the various secondary control strategies in the frequency
control literature, we consider microgrids with decentralised
and distributed secondary control layers, where the distributed
approach follows that in Simpson-Porco et al. (2013). In the
decentralised approach, the control is implemented locally and
there is no communication between inverters, whereas in the
distributed approach, inverter controllers share information with
a selection (not necessarily all) of the other inverters to stabilise
the system. Under these control policies, we study frequency
regulation and ultimate boundedness for the microgrid.

This paper improves on existing work by (i) providing a new
modelling framework to study stability properties of microgrids,
and (ii) deriving regional stability characteristics rather than
focusing on local results around equilibrium points, as is the case
with most of the literature to-date.

Our first contribution is a structured nonlinear model for a
microgrid with embedded primary and secondary control layers.
By performing a suitable change of coordinates, we show that
the stability analysis for the controlled system can be decoupled
into a linear system stability problem, and that of characterising
ultimate boundedness of the trajectories of a perturbed nonlinear
subsystem around steady-state solutions. Our second and main
contribution is then to establish stability properties of the original
nonlinear system by exploiting this model separation. Frequency
regulation is proved through this structured model. Moreover, the
linear analysis shows that frequency regulation is ensuredwithout
the need for time-scale separation. For the perturbed nonlinear

subsystem, we show that ultimate boundedness of the trajectories
starting inside a region of the state space is guaranteed under
a condition on the power injection errors for the inverters. The
ultimate bounds for the trajectories can be computed by iterating
a well-specified nonlinear map, which provides key certificates for
the overall performance of the controlled microgrid.

Preliminary results on the problem considered in this paper
were presented in Heidari et al. (2014); Heidari, Seron, and
Braslavsky (2015), where we analysed frequency control of
microgrids with decentralised secondary loops and homogeneous
droop coefficients. A particular case of a network consisting of two
inverters was analysed in Heidari, Seron, and Braslavsky (2015).
The present paper extends these preliminary results to a more
general control scheme for microgrids with an arbitrary number of
inverters, and further analyses the distributed secondary control
approach. The current study includes the estimation of the region
of attraction to the ultimate bound set on the system trajectories,
that is, trajectories starting within the determined estimate of the
region of attraction will ultimately lie inside a bounded region of
the state space, guaranteeing practical stability of the microgrid.

The rest of the paper is organised as follows. Section 2 intro-
duces notations and preliminary results, followed by the formu-
lation of a structured nonlinear model for the microgrid system in
Section 3. Themain results, characterising ultimate bound sets and
their regions of attraction, are stated and discussed in Section 4.
Section 5 provides a robustness analysis of the ultimate bound sets
with respect to changes in load conditions in the network. The re-
sults are illustrated bymeans of a numerical example in Section6.1.
The example in Section 6.2 further demonstrates scalability of the
proposed technique. Some concluding remarks are presented in
Section 7. The proofs of most of the results in the paper are given
in the Appendix.

2. Preliminaries

We introduce the paper mathematical notation and some
definitions, and adapt from Haimovich and Seron (2013) a key
result on ultimate boundedness of nonlinear dynamical systems.
Mathematical Notations: For a matrix M , M(i,:), M(:,j), M(i:j,:) and
M(i,j) denote its ith row, jth column, rows i to j, and ijth entry,
respectively. Let 1n and 0n be the n-dimensional vectors of unit
and zero entries. {xi}i=1,...,n is a column vector with entries xi,
i = 1, . . . , n, and {yij}i,j=1,...,n is a matrix with entries yij, i, j =

1, . . . , n. A diagonal matrix with entries di ∈ R, i = 1, . . . , n, in
the diagonal, is denoted by diag


d1, . . . , dn


. Rn

+0 denotes the set
of real n-vectors with nonnegative components. Inequalities and
absolute values are taken componentwise. A nonnegative vector
function Ψ : Rn

+0 → Rn
+0 is said to be componentwise non-

decreasing (CND) if whenever ξ1, ξ2 ∈ Rn
+0 and ξ1 ≤ ξ2, then

Ψ (ξ1) ≤ Ψ (ξ2).
We now recall fromHaimovich and Seron (2013) a key result on

ultimate boundedness of a linear system subject to non-vanishing,
state-dependent nonlinear perturbations defined by the equation

ẋ(t) = −Λx(t)+ Hψ(x(t)), (1)

where x ∈ Rr , ψ ∈ Rs, Λ ∈ Rr×r , H ∈ Rr×s and the magnitude of
the nonlinear function ψ(·) is bounded as

|ψ(x(t))| ≤ Ψ (|x(t)|), ∀t ≥ 0, (2)

where Ψ (·) is a CND function.

Lemma 1 (Ultimate Boundedness Haimovich & Seron, 2013, Theo-
rem 3). Consider the system (1) with a perturbation bound of the
form (2), where −Λ is a diagonal Hurwitz matrix and the bounding
function Ψ is CND. Define the nonlinear mapping T : Rr

+0 → Rr
+0 as

T (x) = Λ−1
|H|Ψ (x). (3)
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