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A B S T R A C T

Optimal control in a spatiotemporally varying environment is difficult, especially if the environment is partially
observable. Altitude optimization of an airborne wind energy (AWE) system, in which the tower and foundation
of a contemporary wind turbine is replaced by tethers and a lifting body, is a challenging problem of this kind.
The wind velocity changes both spatially and temporally, and it can only be measured at the altitude where the
system is flying, making the problem partially observable. In this work, we propose and evaluate hierarchical
structures for the aforementioned problem, which fuse coarse, global for the chosen grid resolution and prediction
horizon, where applicable control with fine, local control. These controllers leverage the advantages of both fine,
local and coarse, global control schemes, while addressing their limitations. We show through simulation, using
the real wind velocity data, that the hierarchical structures outperform legacy control strategies in terms of net
energy generation.

1. Introduction

Optimal control in environments that vary both in time and space
is a challenging task. It becomes even harder when the environment
is partially observable. In addressing this problem, the literature has
traditionally focused on centralized control schemes, which are effective
for a number of applications but are often limited in applicability and/or
computationally burdensome. For example, a 𝐻2-optimal control ap-
proach is used in Hinnen, Verhaegen, and Doelman (2007) for real-
time compensation of the optical wave front distortions introduced
by a turbulent medium. Optimization of multi-robot reconnaissance
is another example of spatiotemporal optimization. In Quann, Ojeda,
Smith, Rizzo, Castanier, and Barton (2017), the uncertainty of an spa-
tiotemporal field prediction is minimized to optimize multi-robot way-
point while it is required to ensure that the robots can return to fueling
spots before they run out of fuel. Autonomous soaring of unmanned
aerial vehicles (UAV) also involves optimization in a spatiotemporally
varying environment (Daugherty & Langelaan, 2013).

In addition to many other applications, altitude optimization of
airborne wind energy (AWE) systems is an important partially observ-
able, spatiotemporally varying problem. Available wind resources for
contemporary wind turbines are limited by the hub height. Considering
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the fact that the tower and associated foundation of the wind turbine
often represent as much as a quarter of the system cost, it is not
economically viable to manufacture wind turbines with hub height
greater than 220 m (MHI Vestas Offshore Wind, 2017). The idea of
AWE systems is to utilize a lifting body (a kite, aerostat, or rigid wing)
and tethers as a replacement for the relatively expensive tower and
foundation of a contemporary wind turbine. This exposes the system
to strong, consistent, high-altitude winds. Additionally, the altitude of
the system can be adjusted to search for wind speeds that align more
closely with the rated wind speed of the turbine.

A large body of research in the control and optimization of AWE
systems has focused on kite- and wing-based systems that employ cross-
wind motion to harness significantly more energy than can be generated
under stationary operation. For example, in Fagiano, Milanese, and Piga
(2012), an optimal control law is applied to the KiteGen system, and
the generator operating cycle is optimized. The authors of Gros, Zanon,
and Diehl (2013) introduced fictitious forces and moments at critical
stages of the dynamics to solve a modified and relaxed optimization
problem instead of the non-convex optimal control problem of kite-
based AWE systems. General crosswind path parameters are optimized
in Zgraggen, Fagiano, and Morari (2015) and Zgraggen, Fagiano, and
Morari, (2013) to maximize traction force and output power. Numerical
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optimization of an AWE system trajectory is studied in Horn, Gros, and
Diehl (2013). The lab-scale evaluation of closed-loop optimal control of
an AWE system in crosswind motion is studied in Cobb, Deodhar, and
Vermillion (2017b). Combined plant/controller optimization of tethered
AWE systems in crosswind motion is studied in Nikpoorparizi, Deodhar,
and Vermillion (2017), where it is shown that the optimal performance
under crosswind motion occurs when the system is on the verge of
closed-loop instability. The waypoints that describe an AWE system’s
figure-8 crosswind path are optimized using iterative learning control
in Cobb, Barton, Fathy, and Vermillion (2017a). A model predictive
controller for autonomous figure-of-eight flight for a kite-based AWE
system is developed in Wood, Hesse, and Smith (2017b). Similarly, a
predictive guidance controller is designed in Wood, Ahbe, Hesse, and
Smith (2017a) for autonomous flight of kites. The authors of Diwale,
Faulwasser, and Jones (2017) propose a nonlinear path following MPC
for a kite-based AWE system and guarantee the closed-loop stability by
introducing a terminal constraint similar to vector field control schemes
which are often used in aerial vehicles.

In contrast, a relatively small body of literature has focused on
the use of strategic altitude adjustment to maximize the net energy
generation of an AWE system. Within this body of literature, Vermillion
(2013), Vermillion and Fagiano (2013) assume that wind shear profile is
deterministic and monotonic, and therefore implicitly assume that it is
possible to predict the optimal operating altitude. However, it has been
observed, based on available wind speed data (see Bafandeh & Ver-
million, 2016, 2017), that the wind shear profile changes stochastically
with time. There, Bafandeh and Vermillion (2016, 2017) demonstrate
the use of an extremum seeking (ES) controller to optimize the altitude
of the AWE system. The size of the sinusoidal perturbation is decreased
upon convergence to the optimum point, using a Lyapunov-based
switch. A heuristic probability model of spatiotemporally changing wind
speed, conditioned on previous observations, is introduced in Bin-
Karim, Bafandeh, and Vermillion (2016), where a model predictive
controller (MPC) uses the conditional probability model to search for
the optimum operating altitude in real time. Bayesian optimization (BO)
is another tool, used by Baheri and Vermillion (2017), for altitude
optimization of AWE systems. Specifically, the underlying objective
function is modeled by a Gaussian Process (GP); then, BO utilizes the
predictive uncertainty information from the GP model to determine the
best subsequent operating altitude.

The aforementioned MPC and Lyapunov-based switched ES (LSES)
control strategies have their own pros and cons. While LSES is com-
putationally inexpensive, it only guarantees local convergence to the
optimum. Moreover, LSES as introduced in Bafandeh and Vermillion
(2017) does not utilize the available wind velocity data, measured
prior to or during the course of operation. On the other hand, MPC
is capable of employing global optimization tools for minimizing its
underlying cost function. However, the global nature of the solution is
limited to the finite horizon length of the MPC optimization and the grid
resolution used by the underlying dynamic programming or exhaustive
search. This becomes particularly important when the optimization is
performed over a partially-observable randomly-varying environment,
where uncertainty (modeled through a standard deviation of variance of
an estimated state) must be included as a part of the system state in order
to use deterministic optimization tools. The MPC controller proposed
in Bin-Karim et al. (2016) relies on sequential quadratic programming
(SQP) for the minimization of the underlying cost function, thereby
leading to computational efficiency, but only guaranteeing convergence
to local optima.

A critical evaluation of the aforementioned previous results reveals a
trade-off between coarse, global optimization techniques and fine, local
ones. In this work, we propose three novel mechanisms for fusing coarse,
global techniques with fine, local ones in a hierarchical framework.
Specifically, we address the following questions:

∙ What data should be exchanged between different control levels?

Fig. 1. Basic block diagram showing the common proposed hierarchical altitude
control structure for an AWE system.

∙ What is the best hierarchical configuration based on MPC and
LSES for the partially observable spatiotemporally varying prob-
lem at hand?

In fact, the answer to the first question depends on the choice of
the controller for the different layers of the hierarchy. Fig. 1 provides a
generic block diagram of the basic hierarchical control structure under
consideration. In this block diagram, the variable 𝜒 , which is passed
from the upper-level controller to the mid-level controller, represents a
distinguishing feature between the three candidate control strategies.

The candidate hierarchical control strategies considered in this
work build on our recent conference publication, Bafandeh, Bin-Karim,
and Vermillion, (2017), which considers a simple hierarchical strategy
wherein a global (up to the horizon length and grid resolution) MPC
optimization acts as an advisory input to a fine, local LSES controller.
For the hierarchical architectures considered in this work, Table 1
shows the controller options for upper and middle levels. In the first
candidate control strategy, an upper-level coarse, global MPC selects an
altitude set-point that dictates the local domain of altitudes that can
be explored by a mid-level LSES controller. In the second candidate
strategy, an upper-level coarse, global MPC selects an altitude that
dictates the local domain of altitudes that can be explored by a fine mid-
level MPC optimization. In these two controllers, the upper level MPC
finds the global optimum up to the grid resolution and finite horizon
length, and the mid-level controller explores within the optimal altitude
‘‘bin’’. Finally, in the third candidate strategy, the upper-level controller
estimates the difference between the optimal power output of the system
and the output at the present altitude; this estimated difference, termed
the surrogate power deficit, is used to adjust the perturbation amplitude
for a mid-level LSES controller.

The hierarchical control structure of Fig. 1 also includes a lower-
level flight controller that regulates altitude to its set-point, along with
a turbine torque controller. The turbine torque controller is similar to
the system described in Pao and Johnson (2011), and the flight control
system for the Altaeros BAT is discussed in Vermillion, Grunnagle, Lim,
and Kolmanovsky (2014). Because these lower-level controllers have
been validated through simulations and experiments in legacy work,
they are not the focal point of this work.
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