A comparative assessment of hierarchical control structures for spatiotemporally-varying systems, with application to airborne wind energy

Alireza Bafandeh *, Shamir Bin-Karim, Ali Baheri, Christopher Vermillion

University of North Carolina at Charlotte, Charlotte, NC, USA

A R T I C L E I N F O

Keywords:
Spatiotemporal optimization
Hierarchical control
Airborne wind energy
Extremum seeking control
Model predictive control

A B S T R A C T

Optimal control in a spatiotemporally varying environment is difficult, especially if the environment is partially observable. Altitude optimization of an airborne wind energy (AWE) system, in which the tower and foundation of a contemporary wind turbine is replaced by tethers and a lifting body, is a challenging problem of this kind. The wind velocity changes both spatially and temporally, and it can only be measured at the altitude where the system is flying, making the problem partially observable. In this work, we propose and evaluate hierarchical structures for the aforementioned problem, which fuse coarse, global control with fine, local control. These controllers leverage the advantages of both fine, local and coarse, global control schemes, while addressing their limitations. We show through simulation, using the real wind velocity data, that the hierarchical structures outperform legacy control strategies in terms of net energy generation.

1. Introduction

Optimal control in environments that vary both in time and space is a challenging task. It becomes even harder when the environment is partially observable. In addressing this problem, the literature has traditionally focused on centralized control schemes, which are effective for a number of applications but are often limited in applicability and/or computationally burdensome. For example, a H_2-optimal control approach is used in Hinnen, Verhaegen, and Doelman (2007) for real-time compensation of the optical wave front distortions introduced by a turbulent medium. Optimization of multi-robot reconnaissance is another example of spatiotemporal optimization. In Quann, Ojeda, Smith, Rizzo, Castanier, and Barton (2017), the uncertainty of a spatiotemporal field prediction is minimized to optimize multi-robot waypoint while it is required to ensure that the robots can return to fueling spots before they run out of fuel. Autonomous soaring of unmanned aerial vehicles (UAV) also involves optimization in a spatiotemporally varying environment (Daugherty & Langelaan, 2013).

In addition to many other applications, altitude optimization of airborne wind energy (AWE) systems is an important partially observable, spatiotemporally varying problem. Available wind resources for contemporary wind turbines are limited by the hub height. Considering the fact that the tower and associated foundation of the wind turbine often represent as much as a quarter of the system cost, it is not economically viable to manufacture wind turbines with hub height greater than 220 m (MHI Vestas Offshore Wind, 2017). The idea of AWE systems is to utilize a lifting body (a kite, aerostat, or rigid wing) and tethers as a replacement for the relatively expensive tower and foundation of a contemporary wind turbine. This exposes the system to strong, consistent, high-altitude winds. Additionally, the altitude of the system can be adjusted to search for wind speeds that align more closely with the rated wind speed of the turbine.

A large body of research in the control and optimization of AWE systems has focused on kite- and wing-based systems that employ crosswind motion to harness significantly more energy than can be generated under stationary operation. For example, in Fagiano, Milanese, and Piga (2012), an optimal control law is applied to the KiteGen system, and the generator operating cycle is optimized. The authors of Gros, Zanon, and Diehl (2013) introduced fictitious forces and moments at critical stages of the dynamics to solve a modified and relaxed optimization problem instead of the non-convex optimal control problem of kite-based AWE systems. General crosswind path parameters are optimized in Zgraggen, Fagiano, and Morari (2015) and Zgraggen, Fagiano, and Morari, (2013) to maximize traction force and output power. Numerical
optimization of an AWE system trajectory is studied in Horn, Gros, and Diehl (2013). The lab-scale evaluation of closed-loop optimal control of an AWE system in crosswind motion is studied in Cobb, Deodhar, and Vermillion (2017b). Combined plant/controller optimization of tethered AWE systems in crosswind motion is studied in Nikpoorparizi, Deodhar, and Vermillion (2017), where it is shown that the optimal performance under crosswind motion occurs when the system is on the verge of closed-loop instability. The waypoints that describe an AWE system’s figure-8 crosswind path are optimized using iterative learning control in Cobb, Barton, Fathy, and Vermillion (2017a). A model predictive controller for autonomous figure-of-eight flight for a kite-based AWE system is developed in Wood, Hesse, and Smith (2017b). Similarly, a predictive guidance controller is designed in Wood, Abhe, Hesse, and Smith (2017a) for autonomous flight of kites. The authors of Diwale, Faulwasser, and Jones (2017) propose a nonlinear path following AWE controller (MPC) uses the conditional probability model to search for a mid-level LSES controller. In the first candidate control strategy, an upper-level coarse, global MPC selects an altitude that can be explored by a mid-level LSES controller. In the second candidate control strategy, an upper-level coarse, global MPC selects an altitude set-point that dictates the local domain of altitudes that can be explored by the upper-level controller to the mid-level controller, represents a distinguishing feature between the three candidate control strategies.

The candidate hierarchical control strategies considered in this work build on our recent conference publication, Bafandeh, Bin-Karim, and Vermillion, (2017), which considers a simple hierarchical strategy wherein a global (up to the horizon length and grid resolution) MPC optimization acts as an advisory input to a fine, local LSES controller. For the hierarchical architectures considered in this work, Table 1 shows the controller options for upper and middle levels. In the first candidate control strategy, an upper-level coarse, global MPC selects an altitude set-point that dictates the local domain of altitudes that can be explored by a mid-level LSES controller. In the second candidate strategy, an upper-level coarse, global MPC selects an altitude that dictates the local domain of altitudes that can be explored by a fine mid-level MPC optimization. In these two controllers, the upper level MPC finds the global optimum up to the grid resolution and finite horizon length, and the mid-level controller explores within the optimal altitude “bin”. Finally, in the third candidate strategy, the upper-level controller estimates the difference between the optimal power output of the system and the output at the present altitude; this estimated difference, termed the surrogate power deficit, is used to adjust the perturbation amplitude for a mid-level LSES controller.

The hierarchical control structure of Fig. 1 also includes a lower-level flight controller that regulates altitude to its set-point, along with a turbine torque controller. The turbine torque controller is similar to the system described in Pao and Johnson (2011), and the flight control system for the Altaeros BAT is discussed in Vermillion, Grunnagle, Lim, and Kolmanovsky (2014). Because these lower-level controllers have been validated through simulations and experiments in legacy work, they are not the focal point of this work.

![Figure 1. Basic block diagram showing the common proposed hierarchical altitude control structure for an AWE system.](image-url)
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات