Modeling the coupled electro-mechanical response of a torsional-flutter-based wind harvester with a focus on energy efficiency examination

Luca Caracoglia

Department of Civil and Environmental Engineering, Northeastern University, 400 Snell Engineering Center, 360 Huntington Avenue, Boston, MA 02115, USA

ARTICLE INFO

Keywords:
Wind-based energy harvesting
Aeroelastic vibration
Torsional flutter
Post-critical dynamics
Electro-mechanical coupling

ABSTRACT

Wind energy is a rapidly evolving field of research because of the need for clean energy resources. Large horizontal axis wind turbines (HAWT) are often employed to increase output power and energy production. On the other hand, “specialized” wind-based energy systems have been proposed to capture the wind energy resource in the low wind speed range and for intermediate-scale applications, e.g., one or few residential housing units. Wind harvesters, triggered by various aeroelastic instability regimes, have been studied in recent years [e.g., Matsumoto et al. (2006)]. Along this line of research, the writer has examined a torsional-flutter-based apparatus for extracting energy from the wind flow. This paper presents some recent advancements, a new fully-coupled electro-mechanical model and the numerical results of an ongoing investigation.

1. Introduction

The exploitation of aeroelastic phenomena for energy production is a relatively new technological area in comparison with other research activities in the field of aeroelasticity. Nevertheless, several new contributions and studies have appeared in the literature. One of the first interesting examples refers to the concept of the flutter mill (Tang et al., 2009) for extracting energy from the wind. This conceptual idea has captured the interest of the research community in the last decades. Various solutions have been proposed and examined by researchers (Ahmadi, 1978; Farthing, 2009; Kwon et al., 2011; Matsumoto et al., 2006; Shimizu et al., 2008; Tang et al., 2009).

Among the most interesting examples, the flapping wing power generator (Shimizu et al., 2008) is based on the principle of the classical flutter of airfoils, involving a combined pitching-heaving motion. Another apparatus, which exploits the two-degree-of-freedom coupled flutter of a streamlined body in plunging and pitching motion, has been investigated both analytically and experimentally for energy extraction (Zhu, 2011). The coupled-mode flutter-mill concept has also been proposed and used for water pumping and irrigation purposes (Farthing, 2009). The configuration of this kind of aeroelastic harvesters is composed of either a rigid blade, mounted on a mobile support (Abdelkefi et al., 2012a) or several flexible blades (Abdelkefi et al., 2012b; Dunnmon et al., 2011; Kwon et al., 2011). If the blade or airfoil is exposed to an air flow speed beyond the critical flutter speed, large vibration can be triggered. The resulting limit-cycle oscillation regime can be exploited and converted to electrical energy (Dowell et al., 2004; Dunnmon et al., 2011). The limit-cycle is influenced by nonlinear aeroelastic effects. Oscillation amplitudes must be controlled both to optimize energy extraction from the flow and facilitate conversion to electrical power. Along the same line, the use of airfoil-like plates equipped with porous screens has been recently proposed as a new development of the flutter mill concept (Pigolotti et al., 2016, 2017).

In most successful applications of the flutter mill concept (Abdelkefi et al., 2012a; Dunnmon et al., 2011) the use of piezo-electric materials has been indicated as a practical technology that converts elastic deformation energy to electricity. Piezo-electric actuators have also been recently used to harvest energy from transverse galloping of square prisms in fluid flow (Abdelkefi et al., 2013, 2014), a mechanism conceptually simpler than coupled flutter, and from flutter-induced vibration of miniature beams, predominantly employed for sensor design (Casadei and Bertoldi, 2014). Capitalizing from some recent advances in the exploitation of piezo-electric materials, a number of design configurations of galloping-based harvesters have also been recently examined and experimentally tested, either at small scale (Tomasini and Giappino, 2016) or miniature scale [e.g., for installations inside air ventilation systems (Biscarini et al., 2016; Gkoumas et al., 2017; Petrini et al., 2014)]. The piezo-electric technology is typically efficient if either
vibration frequencies are greater than 10 Hz (Priya and Inman, 2009) or the energy transfer is enhanced by repeated impacts (Zhu and Zhang, 2015). Nevertheless, the high cost of piezo-electric materials restricts its propensity to exhibit torsional buffeting vibration prior to the post-critical flutter state, stable beyond the critical flutter speed. This phenomenon is a prerogative of long-span bridges with bluff deck girders (Scanlan and Tomko, 1971). It is also possible in the case of streamlined airfoils if the center (axis) of rotation of the airfoil’s cross-section coincides with the leading edge of the profile (Bisplinghoff et al., 1955; Kakkavas, 1998).

It is observed that the pitching rotation mechanism of an H-shaped cross section, similar to a bluff bridge deck and prone to torsional flutter, was proposed in the recent past to convert wind power to electric energy (Ahmadi, 1979). An H-shaped cross section is believed to be adequate for its propensity to exhibit torsional flutter. However, it also has several disadvantages. For example, sensitivity to incoming turbulence may lead to non-negligible buffeting vibration prior to the flutter onset, which needs to be avoided to prolong the lifetime of the apparatus. Furthermore, a bluff body would tend to produce larger drag loads, which must be considered while designing the structural support system and also torsional-restoring force rotating mechanism. Additionally, larger wakes generated by a bluff body would reduce efficiency if an array of devices were used (for example, staggered from each other).

The blade-airfoil cross-section and apparatus proposed herein are simple, versatile, and compact; they are possibly attractive in comparison to applications to the scale of small devices.

Nomenclature

The following symbols are used in this study:

- B: average magnetic flux density of the winding coil [teslas]
- b: half-width (half-chord) of the blade-airfoil harvester [m]
- $C(k)$: complex Theodorsen function
- C_P: dimensionless power coefficient of the harvester
- c_j: parameters of the Wagner function with $j = \{1, 2\}$
- e: rotational-axis eccentricity, measured from structural support (Fig. 1)
- $F(k)$: real part of the Theodorsen function
- f_{em}: electro-motive force induced by winding coil on the harvester
- $G(k)$: imaginary part of the Theodorsen function
- I: time-varying induced current in the winding coil (electrical system) [ampères]
- I_{0e}: total mass moment of inertia of the rotating blade-airfoil [kg⋅m²]
- I_{max}: Maximum current during limit-cycle post-critical stages (one period) [ampères]
- i: imaginary unit
- k: reduced frequency
- k^*: reduced frequency of the harvester at flutter
- k_{ae}: still-air reduced angular frequency of the blade-airfoil mechanism
- L_C: inductance of the coil (electrical system) [henries]
- ε: longitudinal length (span or height) of the blade-airfoil [m]
- ε_C: effective coil length (electrical system)
- $M_{0, \text{t}}$: total dimensional torsional moment about pole O [N⋅m]
- $M_{\text{0,ae,u}}$: unsteady dimensionless aeroelastic torque about pole O
- $M_{\text{e,m}}$: total dimensional electromotive torque about pole O [N⋅m]
- m: mass of the 1 dof model illustrating electro-mechanical coupling [kg]
- N: number of winding coils (electrical system)
- P_{in}, P_{out}: Maximum (instantaneous) input and output powers [watts]
- p: sliding dof of the magnet inside the winding coil

(see also the table for definitions of other symbols, parameters, functions, and operators).

Operators

- (\cdot): first and second derivative with respect to s
دریافت فوری
متن کامل مقاله
امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات