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A B S T R A C T

Fatigue causes decrements in vigilant attention and reaction time and is a major safety hazard in the trucking
industry. There is a need to quantify the relationship between driver fatigue and safety in terms of operationally
relevant measures. Hard-braking events are a suitable measure for this purpose as they are relatively easily
observed and are correlated with collisions and near-crashes. We developed an analytic approach that predicts
driver fatigue based on a biomathematical model and then estimates hard-braking events as a function of pre-
dicted fatigue, controlling for time of day to account for systematic variations in exposure (traffic density). The
analysis used de-identified data from a previously published, naturalistic field study of 106 U.S. commercial
motor vehicle (CMV) drivers. Data analyzed included drivers’ official duty logs, sleep patterns measured around
the clock using wrist actigraphy, and continuous recording of vehicle data to capture hard-braking events. The
curve relating predicted fatigue to hard-braking events showed that the frequency of hard-braking events in-
creased as predicted fatigue levels worsened. For each increment on the fatigue scale, the frequency of hard-
braking events increased by 7.8%. The results provide proof of concept for a novel approach that predicts fatigue
based on drivers’ sleep patterns and estimates driving performance in terms of an operational metric related to
safety. The approach can be translated to practice by CMV operators to achieve a fatigue risk profile specific to
their own settings, in order to support data-driven decisions about fatigue countermeasures that cost-effectively
deliver quantifiable operational benefits.

1. Introduction

Fatigue is a major safety hazard in the trucking industry (Philip and
Åkerstedt, 2006). There are many factors that contribute to driver fa-
tigue such as long working hours, night and early morning duty periods,
and chronic sleep insufficiency (Van Dongen et al., 2003; Mollicone
et al., 2010). Regardless of its cause, fatigue causes decrements in
vigilant attention and reaction time (Lim and Dinges, 2008), impacting
safety (Van Dongen et al., 2016).

There is a need to better understand the relationship between driver
fatigue and safety (Williamson et al., 2011; Sparrow and Van Dongen,
accepted). Metrics already being collected by commercial motor vehicle
(CMV) operators may offer a practical means of quantifying this re-
lationship. One readily available metric is hard braking (Dinges et al.,
2017). Hard-braking events are safety-critical events that are highly
correlated with collisions and near-crashes (Dingus et al., 2006).

Models that account for the effects of sleep/wake and circadian

factors that drive fatigue (Hursh et al., 2016; Calabrese et al., 2017) can
be used to predict fatigue risk levels for given work/rest schedules
(Dawson et al., 2011). A number of biomathematical models (e.g.,
Åkerstedt and Folkard, 1997; Jewett and Kronauer, 1999; Hursh et al.,
2004; McCauley et al., 2013) have been proposed to predict fatigue risk
based on the neurobiology of sleep/wake regulation. These models
differ based on factors such as the range of sleep/wake schedules
considered and the fatigue measures used to fit the model.

In the present study, we used a biomathematical fatigue model
(McCauley et al., 2009, 2013) fit to data from three laboratory studies
with total or partial sleep deprivation, with and without naps, or si-
mulated night shift work, and validated against data from three sepa-
rate laboratory studies with total sleep deprivation, with and without
naps, or partial sleep deprivation followed by varying doses of recovery
sleep. The model provides a fatigue score that is calibrated to perfor-
mance lapses on the Psychomotor Vigilance Test (PVT), a 10-min re-
action time task that measures behavioral alertness (Lim and Dinges,
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2008). For reference, for a schedule with 8 h of sleep per night the
model predicts a daytime average of 4.6 lapses on the PVT, while after
24 h awake it predicts 16.5 lapses.

Model-based fatigue predictions have already been used to account
for human factors-related incident rates in rail operations (Hursh et al.,
2011). Here we focused on CMV operations, and developed an analytic
approach that applied a biomathematical fatigue model (McCauley
et al., 2013) to individual driver sleep/wake timelines and the occur-
rence of hard-braking events as a proxy for human factors-related in-
cident rates. We derived a curve that expresses the occurrence of hard-
braking events as a function of the predicted fatigue level, in combi-
nation with a time-of-day factor to account for exposure (daily traffic
density fluctuations). This curve could be used in operational settings to
predict risk for the occurrence of safety critical-events and take miti-
gating steps to avoid them.

We performed our analysis with data from a previously published
naturalistic field study, where drivers performed their normal duties
and managed their schedules without any interventions. The study is
described in detail in an earlier publication in this journal (Sparrow
et al., 2016). Our objective was to develop a quantitative resource to
enable CMV operators to make data-driven decisions about fatigue
countermeasures that are cost-effective and deliver quantifiable op-
erational benefits.

2. Methods

2.1. Participants

The study population consisted of truck drivers utilizing the U.S.
hours of service (HOS) restart provision, which allows drivers to reset
their duty clock by taking a 34-h restart break. Participating drivers
were required to be fit for duty by regulatory standards and possess a
valid commercial driver’s license. A total of N=106 drivers completed
the study (Sparrow et al., 2016), including 100 men and 6 women,
ranging in age from 24 to 69 years (mean ± SD: 45.4 ± 10.7 years).
Study participants reported having up to 39 years of experience as a
CMV driver (mean ± SD: 12.4 ± 8.7 years). Three drivers were
owner-operators independently contracting with a carrier. The re-
mainder were employees of one of three different carriers. These drivers
had been employed by their current carrier for up to 25 years
(mean ± SD: 6.3 ± 6.4 years). The sample consisted of 44 local dri-
vers, 26 regional drivers, and 36 over-the-road (long-distance) drivers.
No collisions occurred during the study.

All drivers gave written, informed consent. Drivers were compen-
sated for their study participation. They were informed that their par-
ticipation in the study would not affect their employment or contractual
relationship with their carrier, and that their data would be kept strictly
confidential. Data were de-identified prior to analysis. Data were pro-
tected from disclosure by means of a Certificate of Confidentiality is-
sued by the National Institutes of Health. The study protocol was ap-
proved by the Institutional Review Board of Washington State
University.

2.2. Measurements

Data were collected from all 106 drivers (Sparrow et al., 2016). The
average duration of study participation was 11.9 days (SD: 1.5 days).
Data covered 1260 duty days, capturing 414,937 miles (8049 h) of
driving. The study included measures of duty status (continuously
monitored via electronic logging device), sleep (continuously mon-
itored via wrist-worn actigraph), psychomotor vigilance performance
(measured through testing on a 3-min performance task three times a
day), self-reported sleepiness (recorded three times a day), and driving
performance (continuously monitored via vehicle data acquisition sys-
tems while the truck’s ignition switch was activated). The current
analysis focuses on a subset of these measures: duty status, sleep, and

the frequency of hard-braking events.

2.2.1. Duty status
Drivers’ official duty logs for the period of the study were down-

loaded from their carriers’ duty log databases. From each driver’s duty
log, on-duty status and driving status were extracted in 1-min intervals.
For proper alignment of data sets, all data were expressed in terms of
each driver’s home terminal time zone.

2.2.2. Sleep
Drivers were provided with a wrist-worn actigraph (Actiwatch 2;

Philips Respironics, Bend, OR), which they were asked to wear con-
tinuously throughout the study to measure sleep/wake patterns. The
actigraph recorded cumulative activity (movement) counts in 1-min
intervals. Sleep/wake times were scored using a validated, automated
scoring algorithm (Actiware 6; Philips Respironics, Bend, OR).

2.2.3. Hard-braking events
For the duration of the study, participating drivers were assigned a

study vehicle of the type they were driving routinely – either a
Freightliner Cascadia (82 drivers) or an International ProStar (24 dri-
vers). Study vehicles were equipped with a data acquisition system
(Pulsar Informatics, Philadelphia, PA), which made continuous, passive
recordings while the vehicle was in use (i.e., when the ignition switch
was activated). The data acquisition system recorded distance traveled,
speed, fuel use, and a range of other vehicle-based parameters and
driving metrics. The system also captured hard-braking events, derived
from vehicle speed data retrieved from the SAE J1939 network through
a controller area network (CAN) bus; and acceleration, derived from a
global positioning system (GPS) device based on 1-second forward
differences of the speed observations (sampled at 10 Hz). A hard-
braking event was defined by a deceleration force greater than 0.3 g.
Recorded data were encrypted and transmitted to a secure computer
server via cellular networks. A grand total of 7320 h out of a possible
8049 h (90.9%) of driving data was captured by the vehicle data ac-
quisition systems.

2.3. Analytic approach

An analysis was performed by (1) assessing driver fatigue as pre-
dicted from the actigraphically scored sleep/wake patterns using a
biomathematical model (McCauley et al., 2013); (2) quantifying driver
performance in terms of hard-braking events; and (3) fitting a gen-
eralized linear statistical model to estimate the relationship between
predicted fatigue and hard-braking events. Using this statistical model,
risk estimates of hard-braking events were made for the entire timeline
of each subject in the study based on their scored sleep/wake history.

Each subject’s study timeline was segmented into 60-min intervals
and a fatigue value was assigned to each interval based on the pre-
diction from the biomathematical model at the interval start time.
Within each 60-min interval, the drive duration (e.g., 60min if driving
continuously, or less than 60min if breaks were taken or non-driving
duty tasks were performed during the interval) was recorded and the
number of hard-braking events was counted based on the presence of
decelerations greater than 0.3 g when traveling at over 30mph.

A generalized linear modeling approach (McCullagh, 1984) was
used to estimate the relationship between predicted fatigue and the
observed rate of hard-braking events. Although the fatigue model in-
cludes a fixed circadian component (McCauley et al., 2013), an addi-
tional time-of-day factor was included to account for systematic time-
of-day variations in exposure (traffic density).

Within each 60-min interval, the number of hard-braking events, n,
was modeled based on a Poisson distribution with an average number
of events, μ:
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