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a b s t r a c t

Analytical tuning rules for digital PID type–I controllers are presented regardless of the process com-
plexity. This explicit solution allows control engineers 1) to make an accurate examination of the effect of
the controller's sampling time to the control loop's performance both in the time and frequency domain
2) to decide when the control has to be I, PI and when the derivative, D, term has to be added or omitted
3) apply this control action to a series of stable benchmark processes regardless of their complexity. The
former advantages are considered critical in industry applications, since 1) most of the times the choice
of the digital controller's sampling time is based on heuristics and past criteria, 2) there is little a–priori
knowledge of the controlled process making the choice of the type of the controller a trial and error
exercise 3) model parameters change often depending on the control loop's operating point making in
this way, the problem of retuning the controller's parameter a much challenging issue. Basis of the
proposed control law is the principle of the PID tuning via the Magnitude Optimum criterion. The final
control law involves the controller's sampling time Ts within the explicit solution of the controller's
parameters. Finally, the potential of the proposed method is justified by comparing its performance with
the conventional PID tuning when controlling the same process. Further investigation regarding the
choice of the controller's sampling time Ts is also presented and useful conclusions for control engineers
are derived.

& 2017 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

It is by far accepted within the industrial control–automation
society that the PID control law offers the simplest and yet most
efficient solution to many real–world control problems, [1–8]. In
modern control applications, for instance in the field of electrical
drives and power electronics [9–12], where controllers are digitally
implemented, control engineers still tune the PID parameters
based on simple tuning rules, past experience, or heuristics [13,14].
This approach, often leads to poor tuning and unacceptable per-
formance of the control loop in terms of reference tracking and
disturbance rejection. Poor tuning is mainly observed in cases
where there is little a–priori information regarding the model of
the process. A representative example over the industry where
poor controller tuning is observed, is the vector control of medium
voltage motor drives where the range of switching frequency is

often a few hundreds Hz. In this case, the controller's tuning1 is
based often on a simple second order model of the motor and a
linear dc gain kp of the modulation scheme2. Since, both motor
parameters and the modulator's gain change quite frequently de-
pending on the drive's operating point (change of motor's output
frequency), high performance of the drive is not always achieved.
Specific parameters in the area of medium voltage drives which are
considered to change rather frequently are 1) the affect of the
temperature to the rotor time constant [15],3 2) variation of the
linear dc gain kp of the pulse width modulator when PWM
schemes are followed, [16–19]. In both cases, PI controllers are
tuned based on these two parameters. For that reason, many are
the cases when poor performance of the drive's control loop is
observed, since the aforementioned parameters change frequently
while the PI controllers stay tuned with the initial nominal values.

Over the literature, many are the tuning rules that assume the
existence of the First Order Lag Plus Dead Time (FOLPDT) model as
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the basis for developing a control law: a summary of such tuning
rules can be found in [20]. These control laws tune the PID's
parameters based on the dc gain kp of the process, the dominant
time constant and its time delay d, while ignoring other dynamics
of the process. One of these rules which is often used in the area of
many industry applications i.e. electrical drives, is the tuning of the
PID controller via the well known Magnitude Optimum criterion
[21,13]. The principle of the Magnitude Optimum criterion which
was introduced by Sartorius and Oldenbourg, is based on the idea
of designing a controller which renders the magnitude of the
closed loop frequency response as close as possible to unity, in the
widest possible frequency range, ω| ( )| ≃T j 1.

In other words, controller parameters are determined such, so
that the robustness of the control loop to disturbances occurring at
the output of the process, is maximized. Oldenbourg and Sartorius
applied the Magnitude Optimum criterion in type–I systems to
processes consisting of stable real poles and since then certain works
have been proposed towards the method's improvement, [14,22–26].

In this work, the proposed control law extends the application of
the Magnitude Optimum criterion to the design of digital PID con-
trollers. Since modern control applications involve digital controller
deployment, this work targets on defining an explicit PID solution

1. which tunes the PID controller's parameters explicitly as a
function of all modeled process parameters.

2. that involves the sampling time Ts of the controller. Given this
explicit solution, control engineers would be able to apply di-
rectly the explicit PID tuning conditions and investigate the af-
fect of the sampling time to the control loop's performance both
in the time and frequency domain.

3. The analytical expressions regarding the definitions for the P, I
and D gains are straightforward and can be easily integrated
within the software of a digitally implemented PID controller.

For clearly and properly presenting the proposed method, in Section
2, the explicit solution presented in [27] is shortly presented in
Section 2.1, which serves as a fundamental input to the reader to
understand the introduction of the sampling time Ts in the proposed
control law. Within the same section, the digital implementation of
the PID controller is introduced, the analytical proof of which, is
presented in Appendix B. In Sections 3, Sections 4 evaluation results
are presented focusing on the detrimental effect the choice of the
sampling time can have, when regulating the same process via the
analog and digital PID controller respectively. The comparison
focuses on the control of benchmark process models which are
often met over many industry applications. Finally, goal of this work
is to provide both the academic and industry society with a feasible
control action which shall be able to deliver reliable results that
control engineers can reproduce in–house, before deploying the
final control action on a real world prototype application.

2. The proposed PID control law

In this section the conventional, revised and the proposed di-
gital PID control action via the Magnitude Optimum criterion is
presented. For the paper's consistency, the conventional and the
revised analog control law are briefly presented here, since their
complete proof has been thoroughly discussed in [14]. The proof of
the proposed digital PID control follows the same line as in [14]. In
that a general transfer function of the process model is considered
and the explicit solution of the gains is derived based on the plant's
parameters and the sampling time Ts. The PID control law is pre-
sented in Section 2.2, however the whole proof is analytically
presented in Appendix B.

2.1. Analog PID controller design

In this section, a short presentation of the analytic tuning rules
for analog PID–type controllers via the Magnitude Optimum cri-
terion is presented. Its detailed proof has been presented in [14]
and serves as a fundamental input to the reader to further go
through the proposed PID digital control law.

To this end, let the plant transfer function consists of ( − )n 1 –

poles, m–zeros plus a dead time unit in series. Zeros of the plant
may lie both in the left or right imaginary half plane. In that, the
plant transfer function is defined by
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where − >n m1 . The proposed PID–type controller is given by the
flexible form
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allowing its zeros to become conjugate complex. Tpn
stands for the

unmodelled controller dynamics coming from the controller's im-
plementation. According to Fig. 1, the closed loop transfer function
T(s) is given by
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respectively, where α β= = 10 0 according to (1). Normalizing N(s),
( )D s1 by making the substitution ′ =s sc1 results in
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respectively. The corresponding normalized terms involved in the
control loop are given by =x X
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Fig. 1. Block diagram of the closed–loop control system. G(s) is the plant transfer
function, C(s) is the controller transfer function, r (s) is the reference signal, y(s) is
the output of the control loop, yf (s) is the output signal after kh, do(s) and di(s) are
the output and input disturbance signals respectively and no(s) is the noise signal
process output respectively. kp stands for the plant's dc gain and kh is the feedback
path. Switch S stands for the border of the open loop transfer function Fol(s) from r
(s) to yf (s).
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