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A B S T R A C T

This paper aims at the identification of black spots for traffic accidents, i.e. locations with accident counts
beyond what is usual for similar locations, using spatially and temporally aggregated hospital records from
Funen, Denmark. Specifically, we apply an autoregressive Poisson–Tweedie model, which covers a wide range of
discrete distributions and handles zero-inflation as well as overdispersion. The estimated power parameter of the
model was 1.6 (SE= 0.06) suggesting a distribution close to the Pólya-Aeppli distribution. We identified nine
black spots consistently standing out in all six considered calendar years and calculated by simulations a
probability of p= 0.03 for these to be chance findings. Altogether, our results recommend these sites for further
investigation and suggest that our simple approach could play a role in future area based traffic accident pre-
vention planning.

1. Introduction

We present a case study of black spot detection for traffic accidents,
based on six years of hospital admissions data for traffic accidents on
the island of Funen, Denmark. The main goal of black spot detection is
to identify specific sites, e.g. intersections or road segments, as candi-
dates for traffic safety improvements.

This is an active area of research, see e.g. Thomas and DeRobertis
(2013), De Pauw et al. (2014), Vandenbulcke et al. (2014). The concern
for traffic accident prevention stems from the fact that traffic accidents
are estimated to be the eighth leading cause of death at the moment and
are predicted to be the third leading cause of death by 2030 (WHO,
2013).

The data for the present study originated from records of all traffic-
related injuries in the Funen region for the period 2002–2007, using
hospital admissions data from all three hospitals. No study has yet been
done in Denmark using this kind of data, and previous decisions re-
garding traffic safety improvements have been based on accident re-
cords by the police. Although hospital data do not contain those acci-
dents where only material damage occurred, police records, on the
other hand, tend to substantially under-represent vulnerable road users
such as pedestrians and cyclists.

It has also been documented (Lauritsen et al., 2002) that for the
region covered (Funen) more than 90% of treatment costs as well as

societal costs after person injury is covered by those patients seeking
treatment at the hospital. In general police records only cover 15–18%
as seen since the mid-1980s after traffic accidents based on direct
coupling at person level of police and hospital records (see www.ouh.
dk/uag). This suggests that hospital records give a fuller picture of the
health care-related consequences of traffic injuries.

The purpose of this article was to develop a simple yet sufficiently
flexible statistical method suited to our dataset for the identification of
black spots, the latter being locations with higher accident rates than
expected given characteristics of the location and its neighbourhood.

A wide variety of statistical distributions and methods has been
proposed for analysing traffic accident count data. Common distribu-
tions include Poisson and negative binomial distributions, Poisson-
lognormal distributions as well as zero-inflated Poisson and negative
binomial distributions, which have been adopted by, e.g. Jovanis and Li
Chang (1986), Joshua and Garber (1990), Miaou and Lum (1993),
Miaou (1994,1994), Maycock and Hall (1984), Turner and Nicholson
(1998), Amoros et al. (2003), Cafiso et al. (2010), Miaou et al. (2005),
Lord and Miranda-Moreno (2008), Aguero-Valverde and Jovanis
(2008), Lord et al. (2005) and Lord et al. (2007). Random effects can be
used to take correlations among observations as well as unobserved
heterogeneity into account, see, e.g. Shankar et al. (1998), Miaou et al.
(2003), El-Basyouny and Sayed (2009), Venkataraman et al. (2013) and
Barua et al. (2015). Further modern modeling strategies, which have
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been applied to accident data, include latent-class (finite mixture)
models (e.g. Park and Lord, 2009; Buddhavarapu et al., 2016; Heydari
et al., 2017), Markov switching count models (e.g. Malyshkina and
Mannering, 2009, 2010), hierarchical models (e.g. Jones and
Jørgensen, 2003; Kim et al., 2007; Dupont et al., 2013), multivariate
models (e.g. Miaou and Lord, 2003; Depaire et al., 2008; Dong et al.,
2014; Heydari et al., 2017), Bayesian methods (e.g. Li et al., 2007;
Elvik, 2008; Pei et al., 2011) and neural networks (Zeng et al., 2016).
For a more complete overview of models used in accident research and
application studies we refer the reader to Lord and Mannering (2010)
and Mannering et al. (2016).

In this article, we develop a spatial autoregressive model for acci-
dent counts aggregated to squares of size 1 km2. We use the family of
extended Poisson–Tweedie distributions (Bonat et al., 2017), which
provides a flexible class of models to deal with under-, equi- and
overdispersed count data as well as highly skewed count data with
excessive zeros as usual in traffic accidents applications. Poisson–T-
weedie distributions include the Neyman Type A, Pólya-Aeppli, nega-
tive binomial and Poisson inverse-Gaussian distributions as special
cases.

The dataset is presented in more detail in Section 2, Section 3 in-
troduces Poisson–Tweedie distributions, the statistical model and ela-
borates on our definition of black spots. Results are given in Section 4
followed by a discussion in Section 5. In Appendix A we give a detailed
description of our simulations and in Appendix B a computer code for
fitting our proposed model is given.

2. Description of data

The data were collected by the Accident Analysis Group (Hansen
and Lauritsen, 2008) at hospitals located on Funen, Denmark, in the
period from 2002 to 2007 (Fig. 1).

Each patient reporting at a hospital as having been involved in a
traffic accident was asked several questions regarding the accident lo-
cation and other relevant information. For the analysis we used only
accidents for which a location could be related to a house number or an
intersection and we confined us to traffic accidents which occurred on
public roads.

We covered Funen with a grid of 1 km2 squares defined by the UTM
coordinates (UTM zone 31N, WGS84). The injury data was quality as-
sured and aggregated to the grid as described in Hansen and Lauritsen

(2008). The quality assurance excluded hospital contacts with un-
certain location (e.g. not on a regular road), imprecise geocoding (e.g.
“somewhere on a 20 km long road”) or at locations only occurring
partially over the years. Among a total of 27,957 verified traffic acci-
dents on public roads 13,924 (50%) could be located with a precision
which allowed allocation to a given 1x1 km square and therefore in-
clusion in the analysis. The traffic accidents in the following analysis
are the sum of the accidents in each square for each year. Using data
essentially accumulated in grid cells allowed to circumvent the difficult
task to relate single accident locations to specific intersections. For
other aspects related to the use of grids we refer to Xie et al. (2017).

Fig. 2 shows the number of accidents for the first year (2002) and
the average of the year totals over the six years 2002–2007. In 2002
there was a total of 2145 traffic accidents and the average of the year
totals was 2321. In 2002 in 3335 (85.3%) of the 3911 squares no ac-
cident was reported and over all six years 2427 (62.3%) locations had
no reported accident.

The number of intersections and the street-length in a square are
used as risk indicators for traffic accidents at locations. These values are
shown in Fig. 3 and are assumed to be constant over the six years. Our
data did not contain more detailed exposure data, such as accurate
traffic intensity records, nor more precise information about local risk
factors such as the geometry and capacity of intersections.

3. Statistical model and definition of black spots

Accident counts are known for exhibiting overdispersion and zero-
inflation relative to the Poisson distribution (Lord and Mannering,
2010). However, given the wealth of discrete distributions, it is difficult
to commit oneself to a single distributional model as being the most
appropriate one. Therefore, and in order to take the mentioned features
into account in a more unified manner, we consider the broader class of
Poisson–Tweedie mixture distributions. A distribution from this family
of discrete distributions (see Jørgensen and Kokonendji, 2016 for a
formal definition) is specified by three parameters μ, τ and p. Here,
μ > 0 denotes the mean, τ > 0 the dispersion and p≥ 1 the shape/
power parameter. The variance is given by μ+ τ · μp and τ larger than
zero indicates overdispersion. The family of Poisson–Tweedie dis-
tributions allows for zero-inflation and can further be extended to in-
corporate underdispersed count data with nonnegative dispersion τ, see
Bonat et al. (2017) and Bonat (2016, 2017). For p= 1, p= 1.5, p = 2
and p= 3 the Poisson–Tweedie distribution respectively corresponds to
Neyman type A, Pólya-Aeppli, negative binomial and Poisson-inverse
Gaussian/Sichel distribution, see Kokonendji et al. (2004), all of which
are well-known distributions in accident modelling (Kemp, 1967;
Minkova and Balakrishnan, 2014; Özel and İnal, 2010; Lord and
Mannering, 2010; Zha et al., 2016). Since the class of extended Pois-
son–Tweedie distributions comprises major families of distributions
used for traffic modelling and is additionally richer than each single of
these families alone, we consider it well-suited for our purposes.

In the sequel we denote by Yit, i = 1, …, 3911, t= 2002, …, 2007,
the number of accident counts at location i in year t and consider the
following auto-regressive model containing the number of accidents
from neighbouring locations, the calendar year, the street length and
number of intersections as covariates:
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where Si and Li are the number of intersections and street length in
location i, Yi t

d
,
( ) denotes the average accident count at time t over all

neighbouring locations of cell i at distance d, and D ∈ {1, 2, … } is the
maximum distance considered. As distance measure we use the su-
premum norm between the square centres. The set of all neighbouringFig. 1. Denmark with the island Funen.
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